Vector Engine Processor of NEC’s Brand-New Supercomputer SX-Aurora TSUBASA

Yohei Yamada, NEC Corporation
Shintaro Momose, Ph.D., NEC Deutschland GmbH
21 August 2018
Agenda

• Introduction

• SX-Aurora TSUBASA

• Vector Engine

• Benchmarks

• Conclusion
Introduction
History of NEC’s Vector Supercomputer

SX-Aurora TSUBASA

35 years
Experience
For
High Sustained
Performance
Vector computing in a standard environment

- High sustained performance vector processing
- Vector capability is transparently provided on x86/Linux

Aurora architecture

- Applications are entirely executed on VE side

Hardware

- Vector Engine (VE) + x86 node
- High memory bandwidth
- Flexible configuration

SW Environment

- x86 / Linux OS
- Fortran/C/C++ standard programming
- Automatic vectorization and parallelization by proven vector compiler
Supercomputer Model
- For large scale configurations
- DLC with 40°C/104°F water

Rack Mount Model
- Flexible configuration
- Air Cooled

Tower Model
- For developer/programmer
- Personal supercomputer
Vector Engine Card

Air Cooled Card
- Two types of packages

Passive Cooling Type
For Server

Active Cooling Type
For Tower/Workstation

Water Cooled Card
- Direct liquid cooling
- Hot water cooling available

Direct Liquid Cooling Type
For Supercomputer

40°C/104°F water
Vector Engine
Vector Engine Card Implementation

Standard PCIe card
- PCIe Gen3 x16 interface
- Full-length full-height card
- Dual slot
- <300W power

Power consumption under benchmark workloads

<table>
<thead>
<tr>
<th>Workload</th>
<th>POWER [WATT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGEMM</td>
<td>200</td>
</tr>
<tr>
<td>STREAM</td>
<td>150</td>
</tr>
<tr>
<td>HPCG</td>
<td>100</td>
</tr>
</tbody>
</table>
2.5D implementation

- A VE processor and six 8Hi or 4Hi HBM2 modules on a silicon interposer
- Lidless package to minimize thermal resistance
- Package size: 60mm x 60mm
- Interposer size: 32.5mm x 38mm
- VE processor size: 15mm x 33mm

World’s first implementation of a processor with 6 HBM2s
Vector Engine Processor Overview

Components

- 8 vector cores
- 16MB LLC
- 2D mesh network on chip
- DMA engine
- 6 HBM2 controllers and interfaces
- PCI Express Gen3 x16 interface

Specs

<table>
<thead>
<tr>
<th>Spec</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core frequency</td>
<td>1.6GHz</td>
</tr>
<tr>
<td>Core performance</td>
<td>307GF(DP) 614GF(SP)</td>
</tr>
<tr>
<td>CPU performance</td>
<td>2.45TF(DP) 4.91TF(SP)</td>
</tr>
<tr>
<td>Memory bandwidth</td>
<td>1.2TB/s</td>
</tr>
<tr>
<td>Memory capacity</td>
<td>24/48GB</td>
</tr>
</tbody>
</table>

Technology

- 16nm FinFET process
Vector Core

Vector Processing Unit (VPU)
- Powerful computing capability
 - 307.2GFLOPS DP / 614.4GFLOPS SP performance
- High bandwidth memory access
 - 409.6GB/sec Load and Store

Scalar Processing Unit (SPU)
- Provides the basic functionality as a processor
 - Fetch, decode, branch, add, exception handling, etc...
- Controls the status of complete core

Address translation and data forwarding crossbar
- To support contiguous vector memory access
 - 16 elements/cycle vector address generation and translation, 17 requests/cycle issuing
 - 409.6GB/sec load and 409.6GB/sec store data forwarding
Vector Processing Unit

- Four pipelines, each 32-way parallel
 - FMA0: FP fused multiply-add, integer multiply
 - FMA1: FP fused multiply-add, integer multiply
 - ALU0/FMA2: Integer add, multiply, mask, FP FMA
 - ALU1/Store: Integer add, store, complex operation

- Doubled SP performance by 32bit x 2 packed vector data support

- Vector register (VR) renaming with 256 physical VRs
 - 64 architectural VRs are renamed
 - Enhanced preload capability
 - Avoidance of WAR and WAW dependencies

- OoO scheduling

- Dedicated complex operation pipeline to prevent pipeline stall
 - Vector sum, divide, mask population count, etc.

Total 96 FMAs
Scalar Processing Unit

- General enhancements
 - 4 instructions / cycle fetch and decode
 - Sophisticated branch prediction
 - OoO scheduling
 - 8-level speculative execution
 - Four scalar instruction pipes
 - Two 32kB L1 caches + unified 256kB L2 cache
 - Hardware prefetch

- Support for contiguous vector operation
 - Dedicated vector instruction pipe
 - 16 elements / cycle coherency control for vector store
Memory Subsystem

- **High bandwidth**
 - 409.6GB/s x2 core bandwidth
 - Over 3TB/s LLC bandwidth
 - 1.2TB/s memory bandwidth

- **Caches**
 - Scalar L1/L2 caches in each core
 - 16MB shared LLC

- **Two memory networks**
 - 2D mesh NoC for core memory access
 - Ring bus for DMA and PCIe traffic

- **DMA engine**
 - Used by both vector cores and x86 node
 - Can access VE memory, VE registers, and x86 memory
Network on chip (NoC)

2D mesh network
- Maximize bandwidth with minimal wiring
- Minimizing data transfer distance
- 16 layered mesh

Deadlock avoidance
- Dimension-ordered routing
- Virtual channels for request and reply

Adaptive flow control

Age based QoS control
Last Level Cache (LLC)

- Memory side cache
 - Avoiding massive snoop traffic
 - Increasing efficiency of indirect memory access
- 16MB, write back
- Inclusive of L1 and L2
- High bandwidth design
 - 128 banks, in total more than 3TB/s bandwidth
- Auto data scrubbing
- Assignable data buffer feature
 - Priority of data can be controlled by a flag for vector memory access instructions

SX-Aurora TSUBASA

200GB/s Total 3TB/s
Benchmarks

Benchmark conditions
SX-Aurora TSUBASA: SX-Aurora TSUBASA A500 model
Intel Xeon: Intel Xeon Gold 6142 2 sockets, 192GB DDR4-2666
NVIDIA Tesla V100: Intel Xeon CPU E5-2630v4 2 sockets, 128GB DDR4-2400, NVIDIA Tesla V100 16GB
Floating point calculation and memory bandwidth

STREAM, Triad
(Memory bandwidth)

DGEMM
(Floating point performance)

Industry leading memory access performance and efficiency

Comfortable enough compute capability for memory intensive workloads

Note: VE price is much cheaper than V100
HPCG and Himeno benchmark (Poisson equation solver)

Competitive performance and power efficiency available using standard programming paradigms

Note: VE price is much cheaper than V100
Statistical machine learning

- **Workloads**
 - Web ads optimization (Logistic regression)
 - Document clustering (K-means)
 - Recommendation (Singular value decomposition)

- **NEC’s Frovedis™ framework for AI/BigData processing**
 - Apache Spark MLlib compatible API
 - Open source
 - https://github.com/frovedis
Summary

SX-Aurora TSUBASA

- A new product line of vector supercomputers based on Aurora architecture
- Vector capability is provided in a standard x86/Linux environment

Vector Engine

- High memory bandwidth by six HBM2s configuration
- Enhancements of the vector microarchitecture to provide high sustained performance and power efficiency

Benchmarks

- Very competitive performance and power efficiency using standard programming paradigms
- Outstanding performance on statistical machine learning workloads with Frovedis framework
Thank you!
Orchestrating a brighter world