POWER7™ is an 8-core, high performance Server chip. A solid chip is a good start. But to win the race, you need a balanced system. POWER7 enables that balance.
Challenge: Beating Physics to Realize Multi-core Potential

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Multi-core evolution

Socket Throughput Limitation (Physical signal economics)

Compute Throughput Potential
Trends in Server Evolution

- A simple matter of riding the multi-core trend?
- Add more cores to the die, beef up some interfaces, and scale to a large SMP?

Enabled by:
- Technology
- Innovation

Driven by:
- IT Evolution
- Economics

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Trends in Server Evolution

- A simple matter of riding the multi-core trend?
- Add more cores to the die, beef up some interfaces, and scale to a large SMP?

Not so simple:
- Emerging entry servers have characteristics similar to traditional high-end large SMP servers

Enabled by:
- Technology
- Innovation

Driven by:
- IT Evolution
- Economics

Achieving solid virtual machine performance requires a Balanced System Structure.

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Trends in Server Evolution

Enabled by:
- Technology
- Innovation

Driven by:
- IT Evolution
- Economics

Same enablers and driving factors apply at larger scale

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Challenge: How does POWER7 maintain the Balance?

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Compute Throughput Potential

Cache Hierarchy Technology and Innovation

Socket Throughput Limitation (Physical signal economics)

Multi-core evolution
POWER7: IBM’s Next Generation, Balanced POWER Server Chip

Cache Hierarchy Technology and Innovation

Cache Hierarchy Rqmt for POWER® Servers

- Core
 - Low Latency 2M to 4M per Core Cache footprint

Challenge for Multi-core POWER7

POWER4™, POWER5™, and POWER6™ systems derive huge benefit from high bandwidth access to large, off-chip cache.

But socket pin count constraints prevent scaling the off-chip cache interface to support 8 cores.

Large, Shared, 30+ MB Cache footprint much closer than Local Memory
Cache Hierarchy Technology and Innovation

Solution: High speed eDRAM on the processor die

<table>
<thead>
<tr>
<th>Conventional Memory DRAM</th>
<th>IBM ASIC eDRAM</th>
<th>IBM Custom eDRAM</th>
<th>Custom Dense SRAM</th>
<th>Custom Fast SRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense, low power</td>
<td>Off uP Chip</td>
<td>On uP Chip</td>
<td>High Area/power</td>
<td>High speed/bandwidth</td>
</tr>
<tr>
<td>Low speed/bandwidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conventional Memory DIMMs | Large, Off-chip 30+ MB Cache | On-processor 30+ MB Cache | On-processor Multi-MB Cache | Private core Sub-MB Cache

Industry Standard Caching and Memory Technologies:
Conventional DIMMs, Dense and Fast SRAM’s.

IBM’s POWER Servers have leveraged large off-chip eDRAM caches in POWER4, 5, and 6.

With POWER7, IBM introduces on-processor, high-speed, custom eDRAM, combining the dense, low power attributes of eDRAM with the speed and bandwidth of SRAM.
Cache Hierarchy Technology and Innovation
Cache Hierarchy Technology and Innovation

Cache Hierarchy Rqmt for POWER Servers

- Core
 - Low Latency 2M to 4M per Core Cache footprint

- Core
 - Low Latency 2M to 4M per Core Cache footprint

Large, Shared, 30+ MB Cache footprint much closer than Local Memory

Challenge for Multi-core POWER7

Need to satisfy both caching requirements with one cache.
Cache Hierarchy Technology and Innovation

Solution: Hybrid L3 “Fluid” Cache Structure

- Keeps multiple footprints at ~3X lower latency than local memory.

Working Set Footprints
Solution: Hybrid L3 “Fluid” Cache Structure

- Keeps multiple footprints at ~3X lower latency than local memory.
- Automatically migrates private footprints (up to 4M) to fast local region (per core) at ~5X lower latency than full L3 cache.
- Automatically clones shared data to multiple private regions.
Cache Hierarchy Technology and Innovation

Solution: Hybrid L3 “Fluid” Cache Structure

- Enables a subset of the cores to utilize the entire large shared L3 cache when the remaining cores are not using it.
Cache Hierarchy Technology and Innovation
Cache Hierarchy Technology and Innovation

Cache Hierarchy Rqmt for POWER Servers

Low Latency 2M to 4M per Core Cache footprint

Low Latency 2M to 4M per Core Cache footprint

Large, Shared, 30+ MB Cache footprint much closer than Local Memory

Challenge for Multi-core POWER7

Low power, dense eDRAM is best when complemented by low latency, high bandwidth, fast SRAM structures

IBM Custom eDRAM

Custom Fast SRAM

Dense, low power
Lower speed/bandwidth

High Area/power
High speed/bandwidth

On-processor 30+ MB Cache

Private core Sub-MB Cache
Solution: L2 “Turbo” Cache

- L2 “Turbo” cache keeps a tight 256K working set with extremely low latency (~3X lower than local L3 region) and high bandwidth, reducing L3 power and boosting performance.
Cache Hierarchy Technology and Innovation
Cache Hierarchy Summary

<table>
<thead>
<tr>
<th>Cache Level</th>
<th>Capacity</th>
<th>Array</th>
<th>Policy</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Data</td>
<td>32K</td>
<td>Fast SRAM</td>
<td>Store-thru</td>
<td>Local thread storage update</td>
</tr>
<tr>
<td>Private L2</td>
<td>256K</td>
<td>Fast SRAM</td>
<td>Store-In</td>
<td>De-coupled global storage update</td>
</tr>
<tr>
<td>Fast L3 Region</td>
<td>Up to 4M</td>
<td>eDRAM</td>
<td>Partial Victim</td>
<td>Reduced power footprint (up to 4M)</td>
</tr>
<tr>
<td>Shared L3</td>
<td>32M</td>
<td>eDRAM</td>
<td>Adaptive</td>
<td>Large 32M shared footprint</td>
</tr>
</tbody>
</table>
POWER7: IBM’s Next Generation, Balanced POWER Server Chip

Challenge: How does POWER7 maintain the Balance?

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Compute Throughput Potential

Advances in Memory Subsystem

Cache Hierarchy Technology and Innovation

Socket Throughput Limitation (Physical signal economics)

Multi-core evolution
Advances in Memory Subsystem

Memory Subsystem Rqmt for POWER Servers

- Need 16 to 32 GB of Storage per Core
- Need 10 to 20 GB/s Sustained bandwidth per Core

Challenge for Multi-core POWER7

- **Socket Challenge:**
 4x growth in memory bandwidth and capacity needed per socket.

- **System Challenge:**
 Packaging more memory into similar volume with similar energy and cooling constraints.
Advances in Memory Subsystem

Multi-faceted Solution

1) Dual Integrated DDR3 Controllers
 - Massive 16KB scheduling window per POWER7 chip insures high channel and DIMM utilization
 - Sparse access acceleration
 - Advanced Energy Management
 - Numerous RAS advances

2) Eight high speed 6.4 GHz channels
 - New low power differential signaling
 - Sustained 100+ GB/s per socket

3) New DDR3 buffer chip architecture
 - Larger capacity support (32 GB / core)
 - Energy Management support
 - RAS enablement

4) DDR3 DRAMs
 - Supports 800, 1066, 1333, and 1600

* Statements regarding memory subsystem features do not imply that IBM will introduce a system with these capabilities.
Advances in Memory Subsystem
Challenge: How does POWER7 maintain the Balance?

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Compute Throughput Potential

Advances in Off-Chip Signaling Technology

Advances in Memory Subsystem

Cache Hierarchy Technology and Innovation

Socket Throughput Limitation (Physical signal economics)

Multi-core evolution
Advances in Off-chip Signaling Technology

1) Enhanced Signal-ended “Elastic Interface” Technology
2) New high speed, low power Differential Technology

<table>
<thead>
<tr>
<th>Interface</th>
<th>Signal Type</th>
<th>Info Width</th>
<th>Frequency</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-chip Cache</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Memory Channels</td>
<td>Differential</td>
<td>28 bytes</td>
<td>6.4 Ghz</td>
<td>180 GB/s</td>
</tr>
<tr>
<td>I/O Bridge</td>
<td>Single-ended</td>
<td>20 bytes</td>
<td>2.5 Ghz</td>
<td>50 GB/s</td>
</tr>
<tr>
<td>SMP Interconnect</td>
<td>Single-ended</td>
<td>120 bytes</td>
<td>3.0 Ghz</td>
<td>360 GB/s</td>
</tr>
<tr>
<td>Total Bandwidth</td>
<td></td>
<td></td>
<td></td>
<td>590 GB/s</td>
</tr>
</tbody>
</table>

(Note that bandwidths shown are raw, peak signal bandwidths)

- Moving L3 onto POWER7 along with advances in signaling technology enables significant raw bandwidth growth for both memory and I/O subsystems. Note that advanced scheduling improves POWER7’s ability to utilize memory bandwidth.
POWER7: IBM’s Next Generation, Balanced POWER Server Chip

Challenge: How does POWER7 maintain the Balance?

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Compute Throughput Potential

Exploit Long Term Investment in Coherence Innovation

Advances in Off-Chip Signaling Technology

Advances in Memory Subsystem

Cache Hierarchy Technology and Innovation

Socket Throughput Limitation (Physical signal economics)

Multi-core evolution
Exploit Long Term Investment in Coherence Innovation

Using local and remote SMP links, up to 32 POWER7 chips are connected.
Exploit Long Term Investment in Coherence Innovation

Up to 32 POWER7 chips form a massive SMP system.

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Exploit Long Term Investment in Coherence Innovation

Coherence Protocol Features

- POWER storage Architecture enables decoupled global storage updates. Updates can be reordered and are effectively “deserialized”.

- Decentralized coherence resolution, and bounded latency broadcast transport layer.

- Decentralized coherence resolution, advanced cache states, optimized on-chip transport, and broadcast free barriers.

POWER7 Exploitation

- POWER Servers can drive massive coherence throughput. A 32-chip POWER7 system can manage over 20,000 concurrently reordered coherent storage operations (~4X more than POWER6 systems), with minimal tracking overhead per operation.

- Low latency intervention, high performance locking constructs, and robust scaling.

Key Ingredients for Balanced Scaling in Traditional POWER Servers:

- Architecture enables re-ordered, decoupled storage updates
- Decentralized coherence resolution
- Broadcast transport layer

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.*
Exploit Long Term Investment in Coherence Innovation

Challenge: As system size grows, Coherence broadcast traffic increases

POWER6 High-End Server Virtualized Consolidation Platform
8 to 32 socket 16 to 64-way SMP Server

Global Scope Coherence Broadcast

POWER7 High-End Server UltraScale Cloud Platform
8 to 32 socket 64 to 256-way SMP Server

Compute Throughput

Global Coherence Throughput

320 GB/s

450 GB/s

~5X

Compute Throughput

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Exploit Long Term Investment in Coherence Innovation

Solution: Speculative limited scope Coherence broadcast
- In 2003, recognized emerging trend
- Developed Dual-Scope Broadcast Coherence Protocol for POWER6
- Utilizes 13 cache states and integrated scope indicator in memory

Provides value for POWER6
- Latency reduction
- Near Perfect Scaling for extreme memory intensive workloads
- Ultra-dense packaging (Power 575)

Necessity for POWER7
- 450 GB/s must grow to 1.6 TB/s to match POWER6 scaling
- 450 GB/s \Rightarrow 3.6 TB/s theoretical peak
- 3.6 TB/s \Rightarrow 14.4 TB/s with chip scope

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Conclusion: POWER7 maintains the Balance

Achieves extreme Multi-core throughput while providing Balance and SMP scaling IBM customers expect, by building on a foundation of solid innovation.

IBM POWER chips uniquely positioned to excel given the emerging trends:
1) History of large SMP leadership
2) Storage Architecture economics
3) High density packaging leadership