GOLDSTRIKE™ 1: COINTERRA’S FIRST GENERATION CRYPTO-CURRENCY PROCESSOR FOR BITCOIN MINING MACHINES

Javed Barkatullah, Ph.D., MBA
Timo Hanke, Ph.D.
Ravi Iyengar
Ricky Lewelling
Jim O’Connor
For a message \(m \) find a nonce \(n \) such that the 256-bit result \(\text{Sha-256 (Sha-256 (m || n))} \) has a specified number of leading zero bits ("target")

- Sha-256 is a cryptographic hash function
- Cryptographic hash functions are “one way” functions
- This search problem is best solved by trial-and-error
HISTORY OF BITCOIN MINING HARDWARE

- **GPU based Platform**
- **FPGA based Platform**
- **Custom ASIC based Platform**
- **First Bitcoin Network & CPU based Platform**

Network Difficulty adjusted every 2016 blocks mined

![Graph source: http://bitcoin.sipa.be](http://bitcoin.sipa.be)
GOLDSTRIKE™ 1 DEVELOPMENT TIMELINE

- 4 months from RTL start to tape out!
- 49 days from tape out to first silicon
- Packaged silicon arrived on Dec. 28, 2013
- First system shipped to customer around mid January, 2014
GOLDSTRIKE™ 1 ARCHITECTURE

- Motorola compatible 4-pin SPI Port
- PLL with simple bit-bang interface
- 120 Hash Engines arranged into 16 super-pipes
- 128 deep Input Work FIFO
- 128 deep Output Status FIFO
- 384-bit Pipe Control Register (PCR) to enable/disable individual hash engine
- Low I/O bandwidth requirement
 - New work (384 bits) every 2^{32} clock cycles per engine
• Two rounds of SHA-256 processing
• Searches for a result in 2^{32} nonce range
• Each round consists of 64 iterations
• Fully unrolled iterations
• Two parallel but connected pipelines – message & compressor
• Generates a result out only if target criteria met

\[
\sum_0(A) = (A \gg s_1) \oplus (A \gg s_2) \oplus (A \gg s_3)
\]

\[
\sum_1(E) = (E \gg s_4) \oplus (E \gg s_5) \oplus (E \gg s_6)
\]

\[
Ch(E,F,G) = (E \land F) \oplus (\neg E \land G)
\]

\[
Maj(A,B,C) = (A \land B) \oplus (B \land C) \oplus (C \land A)
\]

All registers are 32-bits wide.
• 512 bits message word divided in to 16 words, 32-bit wide (W_0 to W_{15})

\[\sigma_0(W_{1,\text{in}}) = (W_{1,\text{in}} \gg\!> s_7) \oplus (W_{1,\text{in}} \gg\!> s_8) \oplus (W_{1,\text{in}} \gg\!> s_9) \]

\[\sigma_1(W_{14,\text{in}}) = (W_{14,\text{in}} \gg\!> s_{10}) \oplus (W_{14,\text{in}} \gg\!> s_{11}) \oplus (W_{14,\text{in}} \gg\!> s_{12}) \]
• Global Foundries HKMG 28nm HPP process
• 9 metal layers
• 120 hash engines in 11x11 array (grey boxes)
• Top level logic block in the center
GOLDSTRIKE™-1 (GS1) PACKAGE

- 37.5 x 37.5 mm FCBGA package
- 4 bare dies per package
- 1296 pins
- > 500 GH/s @ 1.05GHz & 0.7v
HEAT DISSIPATION CHALLENGE

- Cooling options examined:
 - Heat sink + Airflow ← Common in CPU applications
 - Liquid Cooling ← Popular among over-clockers
 - Immersion ← Efficient for data centers
- Liquid cooling with direct attach cooling head selected
 - Enable a common platform for both home & data center customers

Air Temps on Plane 3mm above PCB Top
Up to 2TH/s hash rate per appliance

- Dual PCB with 4 GS1 packages total
- Power budget to meet household outlet capacity

Layout - 4U chassis Design

- Driven by cooling requirements
 - Radiator cross-section
 - Fan Size
- Similar design for TerraMiner IV data center and home models
- Push pull airflow design for maximum performance
- Fans chosen for balance between cost, performance & audible noise
- Dual 1U power supplies for minimal volume impact
TERRAMINER APPLIANCE IMAGES

Front View

Back View

AIR FLOW
TERRAMINER™ IN DATACENTER
ASIC DESIGN CHALLENGES & CHOICES

Challenges:

• High power density and high node toggle rates
 • Power delivery
 • Heat dissipation
 • IR drop and di/dt noise
• Very high sequential cell count
• Reduce die area and power consumption
• Very short (4-month) schedule from RTL start to tape out
• Very small design team

Choices:

• Optimize common core blocks
• Maximize design repeat & reuse
• Utilize highly experienced design team
CONCLUDING REMARKS

• Continued demand for higher performance and lower power appliance
• Maintain Cointerra’s leadership position in Bitcoin mining industry
 • New designs with increased power efficiency and performance