I/O Virtualization and System Acceleration in POWER8

Michael Gschwind
IBM Power Systems
Industry Trends Generate New Opportunities

System stack innovations are required to continue Cost/Performance improvements.

© 2015 International Business Machines Corporation
System Design ca. 2015

• Consolidation in the Cloud
 – Virtual Machine Aggregation
 – Processor Virtualization

• I/O Aggregation
 – I/O Virtualization
 – I/O Isolation

• Maintain Performance growth for critical workloads
 – Under Power constraints
 – Under Cost constraints
 – Under Area constraints
Innovation Through Open Standards

• Consolidation in the Cloud
 – Virtual Machine Aggregation
 – Processor Virtualization

• I/O Aggregation
 – I/O Virtualization
 – I/O Isolation

• Maintain Performance growth for critical workloads
 – Under Power constraints
 – Under Cost constraints
 – Under Area constraints
I/O Design Architecture

• I/O Virtualization
 – IO address translation
 – Single level translation ➔ support contiguous PowerVM partitions
 – Hierarchical translation ➔ support Linux/KVM partition memory

• Partition data isolation
 – Separate I/O address spaces for partitions

• Partition fault isolation
 – Fault management domains based on Partitionable Endpoints (PE)
Partitioning and Managing the I/O Space: Partitionable Endpoints

Partitionable Endpoints

PCIe Host Bridge

Partitionable Endpoint State

IOV Adapter

VF VF PF VF VF

Adapter

Switch

Port

Port

PCIe Host Bridge

Partitionable Endpoint State

Adapter

Switch

Port

Port

Adapter

Adapter

Adapter

Adapter
Managing Partitionable Endpoints

- Many I/O functions tracked using Partitionable Endpoints
 - MMIO Load/Store address domains
 - DMA I/O bus address domains and TCEs
 - Interrupts
 - Ordering of transactions per PE
 - PE Error and Reset domains
- Enhanced RAS capabilities
 - Enhanced I/O Error Handling (EEH)
 - Partition isolation
I/O DMA memory translation

- Translate I/O DMA memory addresses to system memory address
 - Isolation of partitions
 - Create contiguous view of non-contiguous data
 - Enable 32 bit devices for 64 bit systems
- Processor chip contains cache of recently accessed tables
 - Full tables stored in system memory
Partitionable Endpoint Management

- DMA validation
 - “Trusted” Requester ID (RID): 16-bit bus/device/function number
 - “Untrusted” 64-bit address – received from device driver
- Interrupts tracked in system memory
- PEs impacted by I/O error identified via RID
 - SRIOV Physical Function fault ➔ PEs of Phys. & all Virt. Adapter Functions

DMA Validation
- PE# for operation
 - TCE cache
 - DMA Address
 - RID

Interrupt Tracking
- Interrupt Source Controller state machine
- Interrupt Vectors and state
- Data
- DMA Address
- RID

Error State Tracking
- Error message state machine
- PE# vector array
- PE# Vector
- PE#
- Index
- Off chip (system memory)
- RID

© 2015 International Business Machines Corporation
Coherent Accelerator Processor Interface (CAPI)

• Integrated in every Power8 system
• Builds on a long history of IBM workload acceleration
• Integrates with big-endian and little-endian accelerators
Heterogeneous System Challenges

- The 4 ‘P’s of System Design
 - Programmer **Productivity**
 - Realize accelerator **Performance** benefits
 - **Portability**: Investment protection for applications
 - **Partitioning** for multi-user systems: processes, partitions
Workload-optimized acceleration with coherent accelerators

- Attached accelerators
 - Accelerate functions that do not fit traditional CPU model
 - Heterogeneous System Architecture

- Coherent integration in system architecture
 - Data sharing
 - Programming
 - Performance
Application Acceleration

- Fine-grained data sharing ➔ coherent, shared memory
- Accelerator-initiated data accesses/transfers ➔ coherent, shared memory
- Pointer identity ➔ shared addressing
- Flexible synchronization ➔ symmetric, programmable interfaces
CAPI Acceleration overcomes Device Driver Deceleration

Typical I/O Model Flow:

- DD Call
- Copy or Pin Source Data
- MMIO Notify Accelerator
- Total ~13µs for data prep

Flow with Coherent Model:

- Shared Mem. Notify Accelerator
- Application Dependent, but Equal to above
- Total ~0.36µs
Workload-optimized acceleration

- On-chip integrated accelerators (SoC design)
 - Compute accelerator (Cell BE)
 - Compression (P7+)
 - Encryption (P7+)
 - Random number generation (P7+)
 - ...

- SoC design offers highest integration, but...
 - Requires new chip design for accelerator
 - Long time to market
 - Requires very high volumes
CAPI: Coherent Accelerator Processor Interface

• Integrate accelerators into system arch.
 – Modular interface
 – Third-party high value-add components

• Standardized, layered protocol
 – architectural interface
 – functional protocol
 – PCIe signaling protocol

• Create workload-optimized innovative solutions
 – Faster time to market
 – Lower bar to entry
 – Variety of implementation options
 FPGAs, ASICs

* Power Service Layer
CAPI accelerator programming

Virtual Addressing
- **Pointer identity**: Pointers reference the same object as the host application.
- CAPI accelerators work with the same virtual memory addresses as CPU.
- CAPI shares page tables and provides address translation of the host application.
- Peer-to-peer programming between CPU and accelerator with in-memory data sharing.

Virtualization and Partitioning
- Address translation supports process isolation → Accelerator has access to application context (only).
- Address translation supports partition isolation → Accelerator has access to partition data (only).
CAPI accelerator programming

Hardware Managed Cache Coherence
- No need for memory pinning
- Data fetched by accelerator based on accelerator application flow
- Accelerator participates in locks
- Low latency communication
CAPI Accelerator Virtualization

• Dedicated Model
 – Accelerator assigned to single process in a partition
 – Binding via Operating System (process) and Hypervisor (partition)
• Time-quantum shared programming model
 – Protocol-controlled model
• Accelerator-directed shared programming model
 – networking model (select context based on incoming data)
Coherent acceleration of data sharing

- Offload data synchronization and data transfers
 - No need to invalidate data before initiating I/O transfers
 - Accelerator feeds itself \(\rightarrow\) avoid use of high-function CPU as data mover

- Available translation, transfer and synchronization bandwidth scales with parallelism
 - As more accelerators are used, available resources scale up
 - Avoid CPU becoming serial bottleneck

Cost avoided by cache-coherent transfers

Cost avoided by system-wide page tables

[Refs: Gschwind, ICCD 2008]
Coherent accelerator programming flexibility

• Garbage collection accelerator
 – Explore boundaries of acceleration
 – Study accelerator programmability

• Pointer identity: advanced data structures
 – Autonomous traversal of data

• Self-paced memory access
 – Simplifies data management
 – No callbacks to request data
 – Zero-copy data access

• Handle complex access patterns

Normalized area×delay product

[Cher & Gschwind, VEE 2008]
CAPI Attached Flash Optimization

- Attach IBM FlashSystem to POWER8 via CAPI
- Read/write commands issued via APIs to eliminate 97% of path length
- Saves 20-30 cores per 1M IOPS
CAPI Unlocks the Next Level of Performance for Flash

Identical hardware with 2 different paths to data

FlashSystem

Conventional I/O

CAPI

POWER S822L

>5x better IOPS per HW thread

>2x lower latency
What CAPI Means for NoSQL Solutions

Today’s NoSQL in memory (x86)
- Infrastructure Requirements
 - Large distributed (Scale out)
 - Large memory per node
 - Networking bandwidth needs
 - Load balancing

Differentiated NoSQL (POWER8 + CAPI + FlashSystem)
- Infrastructure Attributes
 - 192 threads in 4U server drawer
 - 56 TB of flash per 2U drawer
 - Shared Memory & cache for dynamic tuning
 - Elimination of I/O and network overhead
 - Cluster solution in a box

Power CAPI-attached FlashSystem for NoSQL regains infrastructure control and reigns in the cost to deliver services.
Summary

- POWER8 delivers advanced virtualization for CPU and I/O
 - High-performance I/O virtualization
 - Data isolation
 - Fault isolation

- POWER8 takes the next step in exploiting system accelerators
 - Eliminate overheads inherent in I/O model
 - Reduced latency
 - Increased throughput

- Collaborative Innovation based on Open Standards
 - Both specifications donated to OpenPOWER Foundation by IBM
 - Available royalty-free to all OpenPOWER members