PASCAL GPU WITH NVLINK

John Danskin
Denis Foley
August 2016
GP100

610mm²
4 x HBM IO
30 SMs (28+2)
4MB L2 Cache
4 x NVLink
16x GEN3 PCIE
SXM2 MODULE

2U with heatsink
Parallel to motherboard
37% area vs K40 PCIE board
Supports NVLink
300W TDP
DESIGNING FOR HBM

Very short wires
8 memory channels
32 L2$ slices
3TB/s internal bus

HBM bandwidth tracking GPU performance
HBM (HIGH BANDWIDTH MEMORY)

In-package HBM2 memory

4 x 4-High TSV connected DRAM stack on memory base die

DRAM and GPU die on silicon interposer

55mm x 55mm Package
HBM (HIGH BANDWIDTH MEMORY)

4096 Wide interface GPU ⇔ DRAM
720 GBps DRAM bandwidth
3x GDDR5 BW at equal power
4-8x GDDR5 physical density
MANUFACTURING

Yield

Die & 4 stacks known good before assembly

Silicon interposer visually Inspected, not tested
MANUFACTURING
Warpage and Thermal

Chip on Wafer on Substrate mitigates thin interposer warpage
5 devices attached to thick interposer
Interposer thinned after attach

55x55 Package
5-2-5 buildup with a thick 1200um low CTE Core
Stiffener ring rather than a lid for better thermals
NEW GP100 FEATURES

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>JUSTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP16 at 2x FP32 Rate</td>
<td>Deep Learning</td>
</tr>
<tr>
<td>FP16 Atomics</td>
<td>Multi-Thread Math</td>
</tr>
<tr>
<td>FP64 Atomics</td>
<td>Multi-Thread Math</td>
</tr>
<tr>
<td>1.5x DRAM BW / Flop</td>
<td>Enabled by HBM</td>
</tr>
<tr>
<td>Instruction Preemption</td>
<td>Interrupt and Restart (Debug)</td>
</tr>
<tr>
<td>Page Fault Stall</td>
<td>Unified Memory (Next Slide)</td>
</tr>
<tr>
<td>49 Bit Virtual Address</td>
<td>Unified Memory</td>
</tr>
</tbody>
</table>
PASCAL UNIFIED MEMORY

Automatic Page Migration

CUDA 6 Code with Unified Memory

```c
void sortfile(FILE *fp, int N) {
    char *data;
    cudaMemcpyManaged(&data, N);
    fread(data, 1, N, fp);
    qsort<<<...>>>(data, N, 1, compare);
    cudaMemcpyManaged(&data, N);
    use_data(data);
    cudaFree(data);
}
```

Pascal Unified Memory

```c
void sortfile(FILE *fp, int N) {
    char *data;
    data = (char *)malloc(N);
    fread(data, 1, N, fp);
    qsort<<<...>>>(data, N, 1, compare);
    cudaDeviceSynchronize();
    use_data(data);
    free(data);
    *with operating system support
```
GP100 PERFORMANCE SCALING WITH NVLINK

- 2x K80 (M40 for Alexnet)
- 2x P100
- 4x P100
- 8x P100

Applications:
- Alexnet
- VASP
- HOOMD-Blue
- COSMO
- MILC
- Amber
- HACC

The chart shows the performance scaling with NVLink for different applications and configurations.
NVLINK1.0 — PHYSICAL

Differential signaling at 20 Gbps

Building block is x8 with 16 wires in each direction

40 GBps bi-directional bandwidth

Pascal supports 4 NVLinks
Embedded clock
85 Ohm terminated
DC coupled
Bit Error Rate 1×10^{-12}
-22dB insertion loss (~15”)
Polarity inversion
Lane reversal
NVLINK1.0 — PROTOCOL

Packetized protocol with variable length packet

CRC protected

Supports up to 256B transfers

94% efficiency with 256B transfers
NVLINK1.0 — PROTOCOL

Ganged links for higher bandwidth

Data sprayed across ganged links

Supports read/writes/atomics to peer GPU

Supports read/write access to NVLink enabled CPU
NVLINK PACKET

Variable length packet

Header flit contains CRC, DL header and TL header information

AE flit contains information likely to be shared by multiple commands (e.g. upper address bits).

Command specific BE flit used as required.

0-16 data payload flits
SIMPLE READ

REQUESTOR

CRC 64B READ REQ DL HDR

TARGET

CRC 64B READ RESP DL HDR
DATA PAYLOAD 0
DATA PAYLOAD 1
DATA PAYLOAD 2
DATA PAYLOAD 3
CRC AND REPLAY

25b CRC on each packet

5 random bits in error in max packet or a burst of up to 25b on a single lane

Packet header contains packet length

CRC calculated over current header and previous payload to free up packet length info asap
CRC AND REPLAY

Positive acknowledgement of good CRC

Transmitted data stored in replay buffer

In the event of an error replay sequence is started from last ACKed packet
EFFICIENCY

Uni-Directional Read

Data Transfer Size (Bytes)

Efficiency

Bi-Directional Read

Data Transfer Size (Bytes)

Efficiency

Transaction Efficiency - Reads
Two fully connected quads
Quads connected at corners
640 GBps of NVLink bidirectional bandwidth
Load/store access to peer memory
Full atomics to peer GPUs
High speed copy engines for bulk data copy
PCIe to/from CPU
NVLINK TO CPU

Fully connected quad

120 GBps per GPU bidirectional BW to peers

40 GBps per GPU bidirectional BW to CPU

Direct Load/Store access to CPU memory

High Speed Copy Engines for bulk data movement