A Technical Overview of Cortex-M55 and Ethos-U55: Arm’s Most Capable Processors for Endpoint AI

Allan Skillman, Distinguished Engineer, Arm
Tomas Edsö, Senior Principal Engineer, Arm
August 2020
Many New IoT Devices Require Signal Processing + ML
How to Add More Processing Performance to Cortex-M

... without burning too much power?

• Adding Neon (as in Cortex-A & some Cortex-R processors)?
 • Need an area efficient solution, but SIMD is nice
 • Implication to real-time (interrupt latency)

• Superscalar?
 • We already have Cortex-M7 (dual issue), but we need more
 – E.g. Limited data type support

• VLIW as in Digital Signal Processor?
 • No, it breaks compatibility
 • Need extensive tool support
Solution – Helium and Cortex-M55 Processor

Based on a new SIMD instruction set designed for Cortex-M processors

- Vector processing
 - 8 vector registers, 128-bit wide, reuse FPU registers
 - Over 150 new instructions (>130 vector instructions)

- Versatile processing capabilities
 - Vectored Integer / Fixed-point: 32-bit, 16-bit, 8-bit
 - Vectored Floating-point: Single precision, half precision arithmetic
 - Scalar Floating-point: Double, single & half precision arithmetic

- Highly configurable design
- Optimized memory system design
- TrustZone Security Extension

(Arm Custom Instructions available from 2021)
Processor’s Vector Pipeline and Datapath

• A balance between performance and power
 • Double ALU area, >4x performance
 • Suitable for short pipeline

• Overlapping instruction execution to enable higher processing efficiency

Cortex-M55 supports
- 2x Q31/int32
- 4x Q15/int16
- 8x Q7/int8
- 2x fp32
- 4x fp16
Memory System Design

Requirements

- Real-time, low latency - TCMs
- General purpose - caches
- 64-bit data read/write bandwidth
- 32-bit instruction fetch bandwidth
- Up to two separated data R/W (scatter gather)
- 64-bit bandwidth for DMA accesses to TCM

No dedicated DSP memory ports

- TCMs are part of system memory map (C/C++ friendly)
- Up to 16MB I-TCM and 16MB D-TCM
- DMA controller can access to TCM via AHB slave port

A two-level memory system

TCM: Tightly Coupled Memory
DSP-oriented Processing Support

<table>
<thead>
<tr>
<th>‘DSP’ features</th>
<th>Cortex-M55 and Helium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero overhead loops</td>
<td>Low overhead branch extensions</td>
</tr>
<tr>
<td>Complex number processing</td>
<td>Complex number processing</td>
</tr>
<tr>
<td>Circular buffer</td>
<td>Scatter-gather memory access with instruction for circular address generation</td>
</tr>
<tr>
<td>Bit reverse addressing</td>
<td>Scatter-gather memory access with instruction for bit-reverse address generation</td>
</tr>
<tr>
<td>Dedicated DSP data memory interface</td>
<td>Multiple TCM interface to support vector memory accesses + pipeline optimization</td>
</tr>
<tr>
<td>Interleave data accesses</td>
<td>Interleave data accesses</td>
</tr>
</tbody>
</table>
Arm Cortex-M55 Processor Performance

Normalized performance (higher is better)

Average performance per datatype for selected CMSIS-DSP kernels vs the Cortex-M4 processor

- Average DSP kernel performance comparison across supported data types
- Relative to Cortex-M4 cycle count
- All data at ISO frequency

Cortex-M55 performance. Subject to change.

Keyword Spotting for Low-power Voice-activated Devices

Cortex-M55 processor achieves low system power for KWS

Structure of KWS algorithm
- Feature extraction: MFCC (FFT-based coefficient extraction)
 - 40ms frame size, 16kHz, 10 features
- NN based classification: 2 convolution layers and 3 fully connected layers
 - Possible NN architecture includes DNN, CNN, RNN (LSTM/GRU)
- NN size can be designed and optimized for different HW budgets
 - 8-bit weights and 8-bit activations
 - 80-500 KB memory, 6 - 80 Million Operations per second
 - Accuracy ranges from 90% - 95%

KWS algorithm publicly available now
- KWS paper including description of the network: https://arxiv.org/abs/1711.07128
- KWS Github link: https://github.com/ARM-software/ML-KWS-for-MCU/

Efficient compute capabilities in next generation Cortex-M

Simulation results of total KWS algorithm on Cortex-M CPUs

>8x higher perf.

Cortex-M55 performance results are based on RTL and C compiler in development. Subject to change.
Cortex-M4/Cortex-M7/Cortex-M33 using AC6.10
Brodest Range of ML-optimized Processing Solutions

Cortex-M today

Cortex-M55

Cortex-M55 and Ethos-U55

Cortex-A, Mali and Ethos-N

- Vibration detection
- Sensor fusion
- Keyword detection
- Anomaly detection
- Object detection
- Gesture detection
- Biometric awareness
- Speech recognition
- Object classification
- Real-time recognition

Data throughput

TOP/s
Ethos-U55 Overview

- Works alongside Cortex-M55, Cortex-M7, Cortex-M33 and Cortex-M4 processors
- Works alongside on-chip SRAM and system flash
- Accelerates CNN and RNN operators
- Efficient weight compression
- 8- or 16-bit activations
- 32, 64, 128 or 256 MAC/cc configurations
Typical Ethos-U55 Data Flow

0. An offline compiled command stream with corresponding compressed weights are put into system Flash.
1. Input activations are put into system SRAM.
2. The host starts Ethos-U55 by defining all memory regions to be used, in particular the location of the command stream and input activations.
3. Ethos-U55 autonomously runs all commands, using SRAM as a scratch buffer. Results are written to a defined SRAM buffer.
4. Interrupt on completion of writing the result.
Ethos-U55 Interfaces

- 32-bit APB slave for registers access
- Two AXI master interfaces
 - M0: Full read+write AXI master to SRAM
 - M1: Read only AXI master to flash
- Q-channel for clock control
- Q-channel for power control
- IRQ for signaling to host
Network Support in Ethos-U55

- Ethos-U55 supports a fixed set of operators and can completely execute networks that map to that operator set. For example:
 - ResNext50
 - Wav2letter

- For networks that cannot be executed on Ethos-U55 completely, the operators unsupported by Ethos-U55 fallback to the attached Cortex-M processor
 - These are accelerated through CMSIS-NN library
 - For many of the popular networks ‘Softmax’ is the only operator that falls back on the processor
Ethos-U55 Optimized Software Flow

- Train network in TensorFlow
- Quantize it to Int8 TFL flatbuffer file (.tflite file)
- NN Optimizer identifies graphs to run on Ethos-U55
 - Optimizes, schedules, and allocates these graphs
 - Lossless compression, reducing size of tflite file
- Runtime executable file on device
- Accelerates kernels on Ethos-U55. Driver handles the communication
- The remaining layers are executed on Cortex-M
 - CMSIS-NN optimized kernels if available
 - Fallback on the TFLu reference kernels
Example Use Case – Smart Speaker

- Cortex-M55 for keyword wake-up, audio processing
- Ethos-U55 for Automatic Speech Recognition (ASR)
Example: Typical ML Workload for a Voice Assistant

- Faster responses
- Smaller form-factors
- Improved accuracy

Latency and energy spent for all tasks listed combined: voice activity detection, noise cancellation, two-mic beamforming, echo cancellation, equalizing, mixing, keyword spotting, OPUS decode, and automatic speech recognition.
Summary

• Can a Cortex-M Processor be built and tuned to do DSP and ML?

Yes. Helium approach can get a good performance, while still...
 • Maintain software compatibility (able to run software for previous Cortex-M devices)
 • Satisfy the embedded market’s requirements (real-time, ease-of-use, low power, security and more)
 • Uncompromised power performance

• With Cortex-M55 + Ethos-U55 processors
 • Best performance on embedded AI
Thank You
Danke
Merci
谢谢
ありがとうございます
Gracias
Kiitos
감사합니다
धन्यवाद
شكرًا
תודה

Find out More:
Cortex-M55: developer.arm.com/cortex-m55
Ethos-U55: developer.arm.com/ethos-U55