Xbox Series X
System Architecture

Jeff Andrews
Mark Grossman
Azure Silicon Architecture Team
8/17/20
Xbox Series X | Next-Gen Console SOC HW Innovation

- 3.8Ghz Zen2 Server Class CPU Cores
- Sampler Feedback Streaming (SFS)
- DirectX Raytracing (DXR)
- Variable Rate Shading (VRS)
- Machine Learning Acceleration
- D3D Mesh Shading
- GDDR6 14Gbps, 320b, => 560GB/s

- Xbox Velocity Architecture
 - MSP Crypto/Decomp @ NVMe SSD BW
- Opus Audio Decode
- High quality Sample Rate Converter
- Project Acoustics acceleration
 - Convolution / FFT FP Audio Engine
- 8K Capable
- HDMI 2.1, 10Gbps FRL, ALLM, DSC
- Variable Refresh Rate (VRR)
- 120 Hz Support
- Linear Light Display Processing
- HSP/Pluton RoT, SHACK
- TSMC N7 Enhanced
- 360.4 mm²
- 15.3 billion transistors
- 12-layer substrate (5-2-5)
- 52.5mm x 52.5mm BGA
- 0.80mm min pitch
- 2963 ball BGA
- Developed with AMD
Xbox Series X | SOC Specs – GPU, DRAM, CPU

- **GPU:**
 - 1.825 GHz, 52 CUs, 12 TFLOPS FP32, 3328 streaming processors

- **DRAM:**
 - 16 GB GDDR6, 10GB high memory interleave + 6GB low memory interleave
 - 20 channels of x16 GDDR6 @ 14Gbps -> 560 GB/s
 - 320 total DRAM banks
 - DRAM security: full BW crypto, integrity check regions

- **CPU:**
 - 8x Zen2 CPU cores @ 3.8 GHz, 3.6 GHz w/SMT
 - 32KB L1 I\$, 32KB L1 D\$, 512KB L2 per CPU core
 - 2x clusters, each cluster: 4C/8T, 4MB L3 -> L2+L3 LLC eff size ~12MB
 - 2x SIMD FP pipes/core: 2 MUL and 2 ADD AVX256 per clk -> 32x SPFP ops/clk
 - Xbox SPLEAP: HW to prevent Escalation Of Privilege attacks
Xbox Series X | SOC Multi-Media, IO, Storage, misc.

- **Video encoder/decoder:**
 - Legacy 480p/1080p decoders + 4K/8K AVC and HEVC/VP9 HDR decode
 - AVC and HEVC HDR encode

- **Display processor:**
 - Full quality HDR/WCG, linear light HDR display processing with 3D LUT
 - HDMI 2.1 including ALLM, VRR, and 10Gb FRL with DSC
 - HDMI 2.1 10Gbps FRL with DSC enables HDR 444 YUV and RGB @ 8Kp60

- **SERDES IO:**
 - PCIe 8x5 Gen4
 - HDMI 2.1, 10Gbps FRL

- **System Mass Storage:**
 - Internal 1TB NVME SSD, x2 PCIe Gen4
 - External user accessible slot for 2nd NVME SSD, x2 PCIe Gen4
 - Blu-Ray 4K/UHD ODD

- **Southbridge:** PCIe attached, USB 3, SATA, system controller, SPI, I2C, etc.
- **Networking:** 1Gb Enet, LAN WiFi, MS Wireless Protocol Controller WiFi
Xbox Series X | Moore’s Law Cost Issues -> Add HW Engines

- Moore’s Law curve OK for effective logic density scaling, but cost is an issue
 - Diagram lower right, from: HC 31 2019, TSMC Keynote, Session 2.7, Page 4: see https://www.hotchips.org/hc31/
 - Power TSMC 16FF+ -> N7e @ historical full-node savings
 - N7e: added complex steps + complex structures + large heterogeneous IP SOC
 - Higher wafer price AND lower yield => higher SOC die cost
- => Add improved HW, plus New HW accelerators to save die area and power

<table>
<thead>
<tr>
<th>SOC</th>
<th>Year</th>
<th>Process, Die area</th>
<th>Transistors</th>
<th>Die Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xbox One</td>
<td>2013</td>
<td>TSMC 28HP, 375mm²</td>
<td>4.8B</td>
<td>$</td>
</tr>
<tr>
<td>Xbox One S</td>
<td>2016</td>
<td>TSMC 16FF+, 237mm²</td>
<td>5.4B</td>
<td>$-</td>
</tr>
<tr>
<td>Xbox One X</td>
<td>2017</td>
<td>TSMC 16FF+, 367mm²</td>
<td>6.6B</td>
<td>$+</td>
</tr>
<tr>
<td>Xbox Series X</td>
<td>2020</td>
<td>TSMC N7e, 360mm²</td>
<td>15.4B</td>
<td>$++</td>
</tr>
</tbody>
</table>
Xbox Series X | SOC Specs – MS Designed HW Engines

- **Audio:** greater SPFP HW math than ALL 8x CPUs in Xbox One X
 - CFPU2: 2x 4-way FP SIMD DSPs, 4x FP engines
 - Programmable, high throughput convolution, FFT, reverb, frequency domain audio
 - MOVAD: Opus real-time decoder, sample rate converter
 - >300x real-time channels of Opus HW decode
 - >100dB SNR SRC/pitching HW real-time perf matched to Opus decode
 - Logan: 4x DSP Cores, SRC, audio FX, XMA decode
 - >300x real-time channels of XMA HW decode

- **Security and Decompression:**
 - HSP/Pluton: Root of Trust, crypto, emCPUs, SHACK
 - SHACK: Secure HArdware Crypto Keys
 - MSP: crypto/hash/decomp @ NVMe SSD BW, saves 2+ Zen2 cores’ workload
 - 4 high-BW HW crypto, total >5GB/s, plus 4 hash engines >5 GB/s
 - 2 general + texture decompression engines, total >6 GB/s output
Little DRAM cost reduction
-30% YoY traditionally
- Only -5% YoY last ~8.5 years

Flash still cost reducing well
- ~23% YoY last ~8.5 years

DRAM/Flash $/GB ratio:
- ~33:1 today

=> High BW NVMe SSD as backing store for DRAM game art content SW cache

Huge game SSD load time benefit
Solves HDD areal density (^2) vs. linear bit-rate scaling issue

Xbox team planning this transition to high BW flash to save DRAM footprint since 2007
Shader Feedback Streaming (SFS):
- GPU SFS HW records active texture portions
- Game prioritizes order of fetch/free
- DirectStorage manages SSD, MSP crypto/decomp

DRAM benefit: avg 2.5x game art capacity

MSP enabled NVMe SSD storage savings:
- Lossless MS XVA ~2:1 compression on BCn textures
 - MS XVA decomp supports higher RDO+lossy ratios
- Opus audio compression
- Deflate/Zlib general decompression

Upper Left: render with texture per-MIP level color overlay
Lower Left: SFS recording of active texture portions for globe
“We’re at a point where the technology is out of the way.” - Matt Booty

GPU goals: satisfy increased realism, screen resolution and frame rate

• Implement new algorithms in silicon w/o breaking the bank
• Efficient enhancements rather than isolated cores
Xbox Series X | GPU diagram

- 26 active Dual Compute Units
- Unified Geometry Engine
- Mesh Shading Geometry Engine
- Distributed Primitives & Rasterization
- Screen Tiled Color/Depth unit
- Multi-core Command Processor
- Three-level Cache, TLB
• Four SIMDs plus 4 Scalar ALUs
• 32 Scalar FP32 FMAD per SIMD, 128 per Dual CU with data sharing
• Launch 7 instructions/clk per CU
 • 2 Vector ALU, 1 Vector Data, 2 Scalar, 2 Control
• 4 Texture or Ray ops/clk per CU
• Total per clk: 256 32b FP, 512 16b FP
Xbox Series X | GPU Evolution

- **XBOX ONE**: 2013, 1080p display
 - 1.3 TFLOPS, 68+200 GB/sec, 1.6 Gtris/sec, 13 Gpix/sec
 - DX11.1+, megatexture, backward compatibility, scalar shader units

- **XBOX ONE X**: 2017, 4K display
 - 6 TFLOPS, 325 GB/sec, 4.4 Gtri/sec, 35 Gpix/sec

- **XBOX Series X**: 2020, 4K 120 Hz, 8K display
 - 12 TFLOPS, 560 GB/sec, 7.3 Gtri/sec, 116 Gpix/sec
Xbox Series X | GPU Evolution

- **XBOX ONE**: 2013, 1080p display
 - 1.3 TFLOPS, 68+200 GB/sec, 1.6 Gtri/sec, 13 Gpix/sec
 - DX11.1+, megatexture, backward compatibility, scalar shader units

- **XBOX ONE X**: 2017, 4K display
 - 6 TFLOPS, 325 GB/sec, 4.4 Gtri/sec, 35 Gpix/sec

- **XBOX Series X**: 2020, 4K 120 Hz, 8K display
 - 12 TFLOPS, 560 GB/sec, 7.3 Gtri/sec, 116 Gpix/sec
• **XBOX ONE**: 2013, 1080p display
 - 1.3 TFLOPS, 68+200 GB/sec, 1.6 Gtri/sec, 13 Gpix/sec
 - DX11.1+, megatexture, backward compatibility, scalar shader units

• **XBOX ONE X**: 2017, 4K display
 - 6 TFLOPS, 325 GB/sec, 4.4 Gtri/sec, 35 Gpix/sec

• **XBOX Series X**: 2020, 4K 120 Hz, 8K display
 - 12 TFLOPS, 560 GB/sec, 7.3 Gtri/sec, 116 Gpix/sec

How to fill 10x more pixels with 4-6x raw GPU and 1x the power consumption?

Answer: patented innovations
Shade fragments via finely controlled density bias
- Rate per x,y axis per 8x8 tile
- Coarse rates: 1x2, 2x1, or 2x2 pixels per color
- Fine rates: 1xAA to 8xAA

Modify per combination of draw, vertex, primitive, screen tile, and AA level

Full edge detail. No holes, warping, or checkerboard artifacts
Compatible with Temporal Anti-Aliasing techniques

Tiny area cost for 10-30% performance gain
Xbox Series X | Sampler Feedback Streaming

XBOX Velocity Architecture GPU Support

Old style PRT: virtualized texture via soft page faults
Burden of shader enlightenment
Serialization through driver memory manager

New HW: Two new MIP Mapping structures
- **LOD Tile Residency Map**
 - Sampler instruction fetches clamped LOD
- **LOD Tile Request Map**
 - Accumulates min LOD that was needed

Simplified shader model
Xbox Series X | Sampler Feedback Streaming

1. Allocate entire texture, populate the small LODs (e.g. 2 and up), mark resident

LOD 0

LOD 1

LOD 2..n
1. Allocate entire texture, populate the small LODs (e.g. 2 and up), mark resident

2. Render frame:
 a) Sample (residency map, resident texture)
1. Allocate entire texture, populate the small LODs (e.g. 2 and up), mark resident

2. Render frame:
 a) Sample (residency map, resident texture)
 b) Record requested LODs
1. Allocate entire texture, populate the small LODs (e.g. 2 and up), mark resident

2. Render frame:
 a) Sample (residency map, resident texture)
 b) Record requested LODs

3. App inspects LOD record, evicts unused tiles, loads requested tiles
1. Allocate entire texture, populate the small LODs (e.g. 2 and up), mark resident
2. Render frame:
 a) Sample (residency map, resident texture)
 b) Record requested LODs
3. App inspects LOD record, evicts unused tiles, loads requested tiles
4. Update residency map
Transition function allows just one map “texel” per texture tile
Smoothing minimizes transition artifacts
Traditional bilinear produces wrong answers
New filter: transitions always in coarser-LOD regions

Sampler Feedback Streaming:
Very small area cost, up to 60% I/O and memory savings
Economical upgrade to traditional rendering
Not a complete replacement
Custom ray-box and ray-triangle units

- 380G/sec ray-box peak, 95G/sec ray-tri peak
- Net perf depends on bandwidth, number of nodes/tris visited per ray
- Shader can run in parallel for BVH traversal, material shading, etc.
- Minor area cost for 3-10x acceleration
Xbox Series X | Other tricks

- ML inference acceleration for game (character behavior, resolution scaling)
 - Very small area cost, 3-10x perf improvement

- Two independent virtualized command streams
 - Different DX API levels
 - Separate virtual machines for main title OS, system OS

- 32b HDR format for rendering, blending, display
 - 999E5 -- 9-bit mantissas, 5-bit shared exponent
 - Better quality than 11:11:10; 50% BW and blend time vs. 64b
Thank you!