Compute substrate for Software 2.0

Ljubisa Bajić and Jasmina Vasiljević
ML
VS.
Moore’s Law
ML vs. Moore's Law (Optimistic)

- ML compute demand
- 100K*Moore's Law (mega cluster)
- 10K*Moore's Law (cluster)
- Optical, analog/nanowires
- Moore’s law
Scale out

ML vs. Moore's Law

- ML compute demand
- Moore's Law - 50%/yr

Scale helps, but the only long-term solution is to change the slope of the curve

Dynamic Execution

20 Watts
Large Clusters are Already the Norm

- Shared memory architectures could not provide the required scale

- Many modern neural nets are trained and inferenced on clusters
 - Many nodes with 4-16 GPUs
 - Private memory space, explicit data movement

- Data parallel at first
 - Sidesteps many communication/synchronization issues

- but model parallel has become necessary
 - The full complexity of cluster programming is now exposed

- Networking + compute on each chip
- Computation directly on packets
- Packet routing controlled by graph compiler
- Hundreds of thousands of nodes in cluster
- One device in Pytorch
Shared Memory Machines

- Each processing unit can see the full memory space

- A processor needs an array element: just issue a LOAD

- Tensor manipulations and views mostly reduce to strided access to same buffer in memory

- Primary compiler challenge – loop nest optimization
Clusters and ML Chips Have Private Memory

- Data is split up between nodes and no local view exists
 - Data transfers explicitly managed

- Tensor manipulations -> inter-node co-ordination
 - Example transpose implementation:
 - Data transfer between 1,0 <-> 0,1
 - Transpose of local tiles

- Hard challenges:
 - Data tiling and parallelization
 - Data transfers, synchronization
 - Complexities with tensor manipulations
 - Memory management

- We solve them holistically
Dynamic Execution

What is it?
Dynamic Execution

Control Flow

Models that dynamically choose subsets of blocks to compute during each pass

Sparse Compute

Dynamic Precision

Runtime Compression

Weights and activations
O(n) Matrix Multiplication

Dense: $O(n^3)$

Sparse: linear speed-up

Chained sparse MM: quadratic speed up

<table>
<thead>
<tr>
<th>Sparsity</th>
<th>Max boost</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>2X</td>
</tr>
<tr>
<td>90%</td>
<td>10X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sparsity</th>
<th>Max boost</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>4X</td>
</tr>
<tr>
<td>90%</td>
<td>100X</td>
</tr>
</tbody>
</table>
O(n) continued

- Generally applicable
 - works for training and inference (unlike pruning)
 - models with general applicability (like GPT3)

- Requires models that dynamically choose subsets of blocks to compute during each pass
 - Mixture of experts
 - LSH
 - Pre-pass based

- Requires hardware that can realize full speed-up from block sparsity
The Full Stack Solution
Architecture & Software
Grayskull
Cluster On a Chip

- 2D grid of cores
 - 120 self contained cores
 - Each core executing independent program

- Network on chip
 - 2D bi-directional torus
 - Optimized for ML-workload

- Connectivity
 - PCIe
 - DRAM

NoC BW	330 GB/sec
Pcie | Gen3 x16
Off-chip memory | LPDDR4
Single Core

- **Packet Compute**
 - Vector, SIMD
 - Programmable & flexible compute
 - Sparse compute

- **Packet Manager**
 - Data transfers & storage
 - Tensor manipulation
 - Dynamic compression

- **Storage**
 - Local SRAM
 - Access to DRAM

- **5 RISC cores**
 - Powerful single-issue processor
 - Runtime software

Tenstorrent

Local SRAM
- 1MB
- 660 GB/sec R/W bw

Compute
- 3 TOPs (8-bit)
- 0.75 TFLOPs (16-bit)

Data formats
- Bfloat, half-float, tf32
- 8-bit
- Several custom formats, <=8-bit fp
Challenges of Connecting Compute Layers

- **Parallelization**
 - Splitting tensors amongst the cores
 - Moving tensors between the cores

- **Tensor Manipulation (TM) instructions**
 - Reshuffle data in various ways

- **Performance**
 - Overlapping compute & transfers
 - Efficient utilization of NoC
 - Efficient utilization of memory bandwidth
The Full Stack Approach

- **AOT Compiler**: Parallelizes compute & packetizes tensors
- **Runtime**: Dynamic memory management
- **Hardware**: Packet manager

Tenstorrent
Graph Compiler
Compilation Into Packets

- **Packetization**
 - Packet headers: packet IDs & routing information
 - No pointers, everything is expressed in terms of packet IDs

- **Compute layer parallelization optimized by graph compiler**

- **Data movement & synchronization expressed explicitly by compiler**
 - NoC is visible to compiler

- **Produces an Instruction Queue for the Packet Manager**
 - Packets re-ordered by NoC
 - In-line TM
 - Memory access patterns
Packet Manager

- Packet Compute Engine
 - Programmable device, flexibility
 - Computes what Packet Manager feeds it
 - Packet header triggers a program for the packet

Diagram:
- Single Core
- SRAM
- DRAM
- NoC
- Packet Manager
- Packet Compute
- Tenstorrent
Packet Manager

- Tensor Manipulation Engine
 - Reshape, transpose, concat, slice
 - In-line, between compute & memory
 - Dynamic packet compression

- Data Transfer Engine
 - Multi-core synchronization
 - Data dependencies, data hazards, data ready, memory space ready
 - Works with runtime software

- Router
 - Moves data across the NoC
 - Back-pressure, guaranteed ordering, deadlock free
 - Optimized *multi-cast* and *gather* operation for ML workloads
Runtime Software

- Five RISC processors per core
- Dynamic memory allocation
 - Runtime buffer (de)allocation
 - Runtime controlled memory target
 - Data locality through SRAM
 - Spills to DRAM and host
- Control flow
 - if-statements, for-loops, while-loops
 - Decisions reflected by jumping around the Instruction Queue executed by Packet Compute and Packet Manager
Flexible Scheduling & Parallelization

Combining multiple parallelization methods leads to higher utilization of large number of cores, resulting in higher performance.

Pipeline Parallelism

Clusters of nodes mapped spatially onto the cores

Model Parallelism

Layers without data dependencies run concurrently

Performance vs. No. of Cores

Combining multiple parallelization methods leads to higher utilization of large number of cores, resulting in higher performance.

Parallelization

No. of Cores

Performance

Layers without data dependencies run concurrently

Model Parallelism
The Full Stack Approach

- **High-performance through concurrency**
 - Asynchronous cores: flexible parallelization & scheduling
 - Packet manager & Packet Compute overlap data transfers & compute

- **High memory utilization**
 - AOT graph compiler can not accurately predict buffer lifetimes
 - Dynamic memory management compensates

- **Dynamic execution**
 - Runtime packet compression & data locality benefits
 - Sparse compute
 - Control flow graphs
Company Overview, Status & Plans
Company Overview

- **Tenstorrent**
 - Founded in 2016
 - ~70 employees in Toronto and Austin
 - Equal mix of CPU, GPU, FPGA backgrounds

- **Goals and targets**
 - ML inference and training
 - Edge to data center
 - General purpose high throughput parallel computation
Jawbridge (2019)

ML processor
- 1 channels of LPDDR4, PCIE g4 x4
- 4 core OoO ARC CPU, runs linux
- 4 TOPS / 1 TFLOPS, 6MB SRAM
- 1.5W

Grayskull (2020)

ML processor
- 8 channels of LPDDR4, PCIE g4 x16
- 4 core OoO ARC CPU, runs linux
- 368 TOPS / 92 TFLOPS, 120MB SRAM
- 65W

Evaluation with multiple large customers
Shipping this fall

Wormhole (2021)

Network switch & ML processor
- Integrated network switch
- 16 ports of 100G ethernet
- 6 channels of GDDR6, PCIE g4 x16
- 4 core OoO ARC CPU, runs linux
65W Grayskull BERT Inference Performance

<table>
<thead>
<tr>
<th>Workload</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT BASE, SQuAD 1.1, fp16 – no conditionals</td>
<td>2,830</td>
</tr>
<tr>
<td>BERT BASE, SQuAD 1.1, fp16 + light conditional execution</td>
<td>10,150</td>
</tr>
<tr>
<td>BERT BASE, SQuAD 1.1, mixed precision, moderate conditional execution</td>
<td>23,345 *</td>
</tr>
</tbody>
</table>

Work in progress, BERT model modified with conditional execution
Software: Compiler generality

<table>
<thead>
<tr>
<th>NLP</th>
<th>Vision/Imaging</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key verticals:</td>
<td>Key verticals:</td>
<td>Key verticals:</td>
</tr>
<tr>
<td>Healthcare, Financials, Ecommerce, Retail</td>
<td>Retail, Security, Automotive</td>
<td>Gaming, Entertainment, social media, ecommerce</td>
</tr>
<tr>
<td>Models ready:</td>
<td>Models ready:</td>
<td>Models ready:</td>
</tr>
<tr>
<td>BERT</td>
<td>Resnet50, SqueezeNet</td>
<td>NCF</td>
</tr>
<tr>
<td>ALBERT</td>
<td>DeepCoNN, Mobilenet</td>
<td>DLRM</td>
</tr>
<tr>
<td>GPT2</td>
<td>Googlenet, VGG</td>
<td>Autoencoder</td>
</tr>
<tr>
<td>T5 LM</td>
<td>Densenet, YOLO</td>
<td>Stacked denoising autoencoder</td>
</tr>
<tr>
<td>GNMT</td>
<td>Inception, SSD Resnet34</td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>Alexnet, SSD</td>
<td></td>
</tr>
<tr>
<td>Electra</td>
<td>ResNext, Mobilenet</td>
<td></td>
</tr>
</tbody>
</table>

Eval with customers

Public beta on our dev cloud November 1st
Framework Integration + Deployment

- Full Pytorch integration
 - Native device
 - Torchscript with full support for conditionals
 - ONNX

- A single device from PyTorch no matter the size of computer

- Automated deployment flow
 - Pre-trained models can benefit from Tenstorrent features
Summary

- Scale and conditional computation to let ML models grow
- Flexibility: run anything
- Usability: easy to use software, hiding all complexity of programming clusters