A 3.2 Gbps/pin HBM2E PHY with Low Power I/O and Enhanced Training Scheme for 2.5D System-in-Package Solutions

Sangyun Hwang, Kwanyeob Chae, Taekyung Yeo, Sangsoo Park, Won Lee, Shinyoung Lee, Soo-Min Lee, Kihwan Seong, Eunkyoung Ha, Eunsu Kim, Jihun Oh, Kyoung-Hoi Koo, Sanghune Park, Jongshin Shin

Foundry Business, Samsung Electronics, Korea
Abstract

- **3.2 Gbps/pin HBM2E PHY IP implementation**
 - Low power I/O scheme (1.07 pJ/bit@write operation)
 - Minimize the number of blocks using VDDQ power
 - Training scheme using redundancy bits (~7% VWM gain)
 - Redundancy pins are used as candidates@initial training

\[\hat{x}_{excluded,DQ}(i) = \arg\min_{x_i} VWM(DQ(x_i)), \quad i = 0, \ldots, 63 \]
Outline

- **Introduction**
 - HBM introduction and test chip for HBM2E PHY

- **Low power I/O**
 - Structure of driver and receiver

- **Training scheme considering redundancy pins**
 - Training flow chart

- **Measurement Results**
 - Implementation and power measurement results
 - Valid window margin results
Introduction

- **HBM2E (High Bandwidth Memory)** [1,2]
 - 1024 pins@>2.8Gbps (>358.4GB/s), 128bit/channel, 32bit/DQS
 - 8CH/device (VDDQ (1.2V), VDDC(1.2V))
 - # of stack/chip: 4H/8H
 - Application: HPC, Server
Test chip for HBM2E PHY

- Test chip structure
 - Two test chips and one HBM memory chip are integrated on single silicon interposer
 - Test chip includes one HBM2 PHY for 4CH and test logics such as traffic generator and memory controllers
 - Traffic generator has several DMAs and one RTIC*

* RTIC (Run Time Integrity Checker)
Outline

- **Introduction**
 - HBM introduction and test chip for HBM2E PHY

- **Low power I/O**
 - Structure of driver and receiver

- **Training scheme considering redundancy pins**
 - Training flow chart

- **Measurement Results**
 - Implementation and power measurement results
 - Valid window margin results
Low power I/O

- Minimize the number of blocks using VDDQ power by moving level shifter (LS) from input side of pre-driver to output side [3]
- Receiver uses only VDD power and it is designed to minimize the number of stages (2stage)

Training scheme including redundancy pins

Motivation is to reduce performance variation among DQ pins which can be caused by PI (Power Integrity) and SI (Signal Integrity).

- Main idea is to include redundancy pins when performing training even though there are no defects.

\[
\hat{x}_{\text{excluded,DQ}}(i) = \arg\min_{x_i \in [0, 15]} VWM(DQ(x_i)), \quad i = 0, ..., 63
\]
Outline

- Introduction
 - HBM introduction and test chip for HBM2E PHY

- Low power I/O
 - Structure of driver and receiver

- Training scheme considering redundancy pins
 - Training flow chart

- Measurement Results
 - Implementation and power measurement results
 - Valid window margin results
Implementation results

- Test chip size is 5 x 3.55 mm² and implemented with 7nm fabrication process
- Two chips and one HBM memory are integrated on single interposer
- Except for training block, HBM PHY with IO for 4CH is 1.6 x 3 mm²
Power and VWM measurement results

- 1.07 pJ/bit @ write operation (HM and I/O)

<table>
<thead>
<tr>
<th>0.75V/1.2V/8CH</th>
<th>WRITE</th>
<th>READ</th>
<th>IDLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM</td>
<td>810</td>
<td>1480</td>
<td>36</td>
</tr>
<tr>
<td>I/O</td>
<td>2700</td>
<td>1130</td>
<td>14</td>
</tr>
</tbody>
</table>

Energy [pJ/b] 1.07 0.56 0.02

- Approximately 7% VWM enhancement
Conclusion

- **3.2Gbps/pin HBM2E PHY is implemented in 7nm**
 - PHY is verified on 2.5 SiP test chip

- **Low power I/O**
 - Minimize the number of blocks using VDDQ

- **Performance**
 - Training scheme including redundancy pins

- **1.07pJ/bit@WRITE and 7% VWM enhancement**