Quantum Supremacy using a Programmable Superconducting Processor

John Martinis
Google & UCSB

- New design, scalable and low 1&2 qubit errors
- Quantum supremacy achieved
 - 200s quantum computer, checked 10k yr
- Computation on 10^{16} state (Hilbert) space
- Fidelity validated with 1&2 qubit errors
 - No additional decoherence physics when scaled
- First useful application: certified random numbers
- Beginning of NISQ era with powerful processors
Sycamore Processor: 54 qubits

New
fast
low errors
Control Hardware

Custom built
High speed
High precision
2-qubit Swap Calibration
Low Errors using Fast 2-Qubit Gates (12 ns)

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Isolated</th>
<th>Simultaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-qubit (e₁)</td>
<td>0.15%</td>
<td>0.16%</td>
</tr>
<tr>
<td>Two-qubit (e₂)</td>
<td>0.36%</td>
<td>0.62%</td>
</tr>
<tr>
<td>Two-qubit, cycle (e₂c)</td>
<td>0.65%</td>
<td>0.93%</td>
</tr>
<tr>
<td>Readout (eᵣ)</td>
<td>3.1%</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

Need to quote Average and Simultaneous
Low Errors for Arbitrary 2-qubit Gates

Excitation preserving unitary
(Fermionic simulation for NISQ)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & -i \sin(\theta) & 0 \\
0 & -i \sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 0 & e^{i\varphi}
\end{pmatrix}
\]

CZ/CNOT for $\varphi = \pi$

Brooks Foxen, ArXiv 2001.08343
Control Sequence

- General purpose algorithm
 - Cycle with 1- and 2-qubit gates
- Simultaneous gates all qubits
- Simplest circuit for quantum supremacy
 - Pseudo-random 1-qubit gates
Validation Algorithm for Quantum Supremacy

- Checks general-purpose circuit
- Randomly chosen gates: qubit speckle
 - Sensitive to single qubit errors
 - Complex & difficult to simulate

Cross entropy fidelity is useful:
 - System validation
 - Learn control map
Quantum Supremacy Data

Classically verifiable

250 gates

Sycamore sampling (N)

5 hours

Classical verification

$m = 14$ cycles

XEB Fidelity, \mathcal{F}_{XEB}

- Prediction from gate and measurement errors

Full circuit
Elided circuit
Patch circuit

number of qubits, n

10 15 20 25 30 35 40 45 50 55
Quantum Supremacy Data

250 gates

Sycamore sampling ($N_s = 1M$): 200 seconds

Classical verification

Classically verifiable

$m = 14$ cycles

Prediction from gate and measurement errors

- Full circuit
- Elided circuit
- Patch circuit

$n = 53$ qubits

Prediction

Elided ($\pm 5\sigma$ error bars)

Patch

1 week
100 years
10 millennia
4 years
600 years
20 cycles

number of qubits, n

number of cycles, m
Quantum Science Results

1) Same fidelity: full, elided, patch, predicted
 Errors NOT depend on entanglement and computation complexity!

1) No new decoherence physics:
 Probability prediction, Fidelity = $\prod_i (1-e_i)$
 Error correction should work

1) Quantum works at $2^{53} = 10^{16}$ Hilbert space
 Previously tested to $\sim 10^3$

1) Test model of digitized errors
 One error gives zero fidelity
 Consistent with error probability
 Tests each gate (of ~ 500)
1. Compile chemistry to qubits
 a. Hartree-Fock
 b. Fermionic operators, 2nd quant.
 c. Coupling sequence (swaps)
 d. Suite of measurements, ...

2. Run quantum circuit for swap θ’s

 ![Diagram of quantum circuit and qubits]

1. Correct imperfections, to F≈99%
 b. Excitation loss
 c. Measurement bias, ...

2. Variational optimization of θ’s

- Double the qubits/electrons as prior largest chemistry simulation
- More than 10X the number of gates

Q-Chemistry on Sycamore

H$_{12}$ dissociation (Sycamore)

![Graph of H-H distance vs. energy]

- Energy [Hartree]
- H-H distance [Å]

Tools:

- OpenFermion
- Cirq
Quantum Computers NOT a commodity:
Performance matters greatly
Breakthrough enables better performance
in future devices
Customers & programmers:
Develop new supremacy algorithms
1 idea away from compelling application
Improving Computer Simulation

- “We expect that lower simulation costs than reported here will eventually be achieved, but we also expect that they will be consistently outpaced by hardware improvements on larger quantum processors.”

- Strongly support **running** validation programs
 - Tricky to write efficient supercomputer code, failures
 - IBM: non-standard use of disk memory
 - All data posted for checking

- Absolutely guarantee a 57+ qubit Sycamore processor
 - First processor successful
 - Did not collapse over finish line

- Distraction from real issue: quantum-hardware performance
Progress Towards Error Correction

In same device:
more qubits and connectivity, lower errors