FUNDAMENTALS OF
SCALING OUT DL TRAINING

Paulius Micikevičius, NVIDIA
HotChips 2020, DL Scale Out Tutorial
Larger is Better in DL

• Larger models lead to higher task accuracies
 • Language models: in the past 2 years grew from 340M to 175B parameters
 • Recommender models: largest ones are reaching O(1B) parameters
 • Vision models: deeper and wider Resnets and ResNeXTs

• Larger datasets lead to higher accuracies
 • Recommender data (user behavior): terabytes to petabytes
 • Image data: 1B Instagram dataset, JFT (300M images)

• Challenges:
 • Larger models -> training state no longer fits on a single processor
 • Larger {models, datasets} -> long time to train

• Solution: scale out computing
Outline

• Brief Review of DNN Training
• Data Parallelism
• Model Parallelism
 • Pipeline
 • Intra-layer
• Communication Pattern Review
• Summary
Neural Network Training

• Start with randomly initialized weights
• Iterate through your data a minibatch of training data samples at a time:
 • Forward pass
 • Backward pass
 • Weight update
Simple Example

- Network of 3 linear layers
- Each layer:
 - Input: vector
 - Output: vector
 - Learned parameters (weights): projection matrix
 - Operation:
 - Multiply the input vector with the matrix
 - Apply a point-wise nonlinearity, say, ReLU
Forward Pass

- Network of 3 linear layers
- Each layer:
 - Input: vector
 - Output: vector
 - Learned parameters (weights): projection matrix
 - Operation:
 - Multiply the input vector with the matrix
 - Apply a point-wise nonlinearity, say, ReLU
Forward Pass

- Network of 3 linear layers
- Each layer:
 - Input: vector
 - Output: vector
 - Learned parameters (weights): projection matrix
 - Operation:
 - Multiply the input vector with the matrix
 - Apply a point-wise nonlinearity, say, ReLU
Forward Pass

- Network of 3 linear layers
- Each layer:
 - Input: vector
 - Output: vector
 - Learned parameters (weights): projection matrix
 - Operation:
 - Multiply the input vector with the matrix
 - Apply a point-wise nonlinearity, say, ReLU
Forward Pass: minibatch of 2 inputs

- Matrix-vector multiplies turn into matrix-matrix multiplies
Simplified Example: Forward Pass, batch of 2

- Matrix-vector multiplies turn into matrix-matrix multiplies
Forward Pass: Compute Loss

- **Loss function:**
 - Produces a loss value that indicates how “wrong” the network was
 - Compares the output to the ground truth for each sample
 - Exact function math varies by task, doesn’t matter for our discussion
- **Goal of training: minimize the loss value**
 - Update network weights so the output closely matches ground truth
Backward Pass

- Goal is to compute the updates to the layer weights
- Achieved by “back propagating” the loss through the layers
 - Each layer computes weight gradient, used to update the weights
 - Each layer computes activation gradient, to be backpropagated to preceding layer
Backward Pass

Compute the weight gradient
- \(dW \): weight gradient (to update weights)
- \(dY \): incoming activation gradient
- \(X \): input activations (from fwd pass)

Compute the activation gradient
- \(dX \): output activation gradient
to backpropagate to the preceding layer
Weight Update

- Also known as ‘optimizer step’
 - Optimizer choices: SGD, Adam, Adagrad, ...

- Input:
 - Current network weights
 - Weight gradients (computed during bwd pass)

- Output: updated weights

- Operation:
 - Increment each weight with the corresponding gradient value
 - In practice, operation is more complex:
 - Update internal state with weight gradient, then update weights using internal state
 - Exact math doesn’t matter for our discussion

- Internal state:
 - 1 or 2 “momenta”
 - Each momentum is as big as the weights
 - Usually fp32 in reduced precision (FP16/BF16) training
 - Optimizer may need 2-6x more memory than just the model

\[
W - lr \times dW = W
\]
Weight Update

- Also known as ‘optimizer step’
 - Optimizer choices: SGD, Adam, Adagrad, ...
- Input:
 - Current network weights
 - Weight gradients (computed during bwd pass)
- Output: updated weights
- Operation:
 - Increment each weight with the corresponding gradient value
 - In practice, operation is more complex:
 - Update internal state with weight gradient, then update weights using internal state
 - Exact math doesn’t matter for our discussion
- Internal state:
 - 1 or 2 “momenta”
 - Each momentum is as big as the weights
 - Usually fp32 in reduced precision (FP16/BF16) training
 - Optimizer may need 2-6x more memory than just the model
Summary of Compute Stages per Layer

Forward Pass

\[W \times X = Y \]

Backward Pass: weight gradients

\[dY \times X^T = dW \]

Backward Pass: activation gradients

\[W^T \times dY = dX \]

- Backward compute is \(\sim 2x \) of forward
- Backward pass requires activations computed during the fwd pass
 - \(X \) in the example (produced by a preceding layer)
 - This can be a major fraction of memory required to train, leading to scale-out for the larger models

Example:
R50 training in fp16 at batch size 256:
- requires \(\sim 15 \) GB of memory
- \(\sim 12 \) GB of that is for activations
Parallelism Taxonomy

Parallel Training

Data Parallel

Model Parallel

Intra Layer

Inter Layer
Data Parallel

- Each worker:
 - Has a copy of the entire neural network model
 - Responsible for compute of a portion of data (training minibatch)
- Forward pass:
 - Computes output activations for its portion of minibatch
 - No communication is needed
- Backward pass:
 - Computes activation gradients for its portion of minibatch
 - Computes contribution to the weight gradient based on its portion of minibatch
 - All workers’ contributions must be summed before weight update
- Weight update:
 - Each worker updates its copy of the model with combined gradients
 - Variants: distributed optimizer
Data Parallel: Forward Pass

- No communication needed
 - Own portion of output becomes own portion of input for next layer
- Backward activation-gradient compute is essentially the same

Worker 0:

\[
W \times X = Y
\]

Worker 1:

\[
W \times X = Y
\]

Worker 2:

\[
W \times X = Y
\]

Worker 3:

\[
W \times X = Y
\]
Data Parallel: Backward Pass

- Each worker computes a different weight gradient (dW)
 - Based only on its own unique portion of data
- Weight gradients will have to be communicated so that after update each worker has the same exact weights

Worker 0:

```
\begin{array}{ccc}
dY & X^T & dW \\
\end{array}
```

Worker 1:

```
\begin{array}{ccc}
dY & X^T & dW \\
\end{array}
```

Worker 2:

```
\begin{array}{ccc}
dY & X^T & dW \\
\end{array}
```

Worker 3:

```
\begin{array}{ccc}
dY & X^T & dW \\
\end{array}
```
Data Parallel: Communication

- **Allreduce:**
 - Sum all the workers’ gradients
 - Distribute the sum to all the workers

- **After Allreduce each worker has the same “global” gradient**
 - Can execute a weight update on its own model -> all workers will have the same model

- **Any exposed communication is overhead, thus:**
 - Use efficient communication (hw and sw), overlap communication, etc.
Allreduce Implementation Choices

• Each of N workers is responsible for:
 • Summing $1/N$ gradients collected from $(N - 1)$ peers
 • Distributing the sums to the $(N - 1)$ peers

• “Ring” reduction
 • For any topology that contains a 1D torus (ring)
 • Each worker communicates with 2 neighbors
 • $2(N - 1)$ steps, worker sends/receives $1/N$ of all bytes
 • Each step requires a synchronization -> $2(N - 1)$ syncs total

• “One-shot” reduction:
 • For fully-connected topologies (switches)
 • Each worker communicates with $(N - 1)$ neighbors
 • 2 steps, each with $(N - 1)$ substeps
 • One step per synchronization -> 2 syncs total
 • Allows the use of arithmetic in switches (Mellanox SHARP)
 • Reduces memory accesses and math by the worker
Communication Implementation

• Communication libraries take care of complex details
 • Accelerator can have multiple ports
 • Links can be duplex
 • Pipelining is used to hide latencies and syncs

• NCCL: NVIDIA Collective Communication Library

• Examples:
 • NVIDIA DGX-1
 • Each of 8 GPUs has 6 NVLINK ports
 • Each NVLINK port is duplex
 • GPUs are connected via hybrid mesh
 • NCCL uses multiples of 12 rings are used for allreduce
 • NVIDIA DGX-A100
 • Each of 8 GPUs has 12 NVLINK ports
 • Each NVLINK port is duplex (25 GB/s per direction)
 • GPUs are fully-connected through switches
 • NCCL uses multiples of 24 rings or one-shots are used for allreduce
Communication Overlap

- Data Parallel training can overlap compute and communication
 - Allreduce gradients for layer K, while computing gradients for layer $(K - 1)$
 - Cannot be hidden completely - last portion of the pipeline is exposed
 - Tradeoff between communication granularity and link bw utilization
 - Made by training framework SW and libraries like Horovod

- Reduction in switches (Mellanox SHARP) helps free up compute resources
 - Allreduce will compete for resources (memory and math bw) with computation
Distributed Optimizer

- At larger scales optimizer (weight update) can start dominating time
 - Each of N workers does $1/N$ of compute for fwd/bwd passes
 - Each of N workers does all the work to update model weights (stays constant with N)
- Solution: distributed optimizer
 - Appeared in: MLPerf v0.6 and later, ZERO paper
 - Include weight update as part of allreduce (each worker is responsible for $1/N^{th}$ of the weights)
 1) Collect and sum up the gradients from peers
 2) Update own portion of the weights ($1/N^{th}$ of the work compared to before)
 3) Broadcast own portion of the updated weights to peers
Data Parallel: Challenges

- **Strong scaling (increase the number of workers, keep minibatch size constant)**
 - Certain layers require minimum minibatch sizes to properly operate
 - Example: batch normalization (BN) generally requires 16+ samples
 - Extra communication is needed between workers when worker minibatch is small
 - Reductions within small subsets of workers

- **Weak scaling (increase the number of workers, increase minibatch size)**
 - Training networks with large minibatches requires hyper-parameter adjustment
 - Learning rate schedule, BN decay, ...
 - Example: R50 (SGD up to bs=16K, LARS above 16K, ...)
 - Often increase the amount of work required to reach the same model accuracy
Workload Increase with Batch Size

- Epochs to reach the same model accuracy (from various submissions to MLPerf v0.7)
 - Epoch = 1 processing pass through entire dataset
Model Parallel

Inter-layer Parallel (aka Pipeline Parallel):
A worker is responsible for its portion of the layers

Intra-layer Parallel:
A worker is responsible for its portion of each layer
Pipeline Parallel

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Worker 0
Worker 1
Worker 2

Time

Forward Loss Backward
Pipeline Parallel

Worker 0
Worker 1
Worker 2

Layer 1 → Layer 2 → Layer 3 → Layer 4 → Layer 5

Forward Loss Backward

Time
Pipeline Parallel

Time

Worker 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Worker 1

Worker 2

Forward
Loss
Backward
Pipeline Parallel

Time

Worker 0
Worker 1
Worker 2

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Forward
Loss
Backward

Forward

Loss

Backward

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Pipeline Parallel

Time

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Worker 0
Worker 1
Worker 2

Forward Loss Backward
Pipeline Parallel

Worker 0, Worker 1, Worker 2

Layer 1, Layer 2, Layer 3, Layer 4, Layer 5

Time

Forward, Loss, Backward
Pipeline Parallel

Worker 0
Worker 1
Worker 2

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Time

Forward
Loss
Backward
Pipeline Parallel

- Idle bubbles:
 - 67%: 12/18 step-slots
- For N workers:
 - $(N - 1)/N$ idle slots
Pipeline Parallel: Subminibatches

- **2 subminibatches**
- **2x more steps**
- Each step is $\frac{1}{2}$ compute
- **Idle bubbles: 50%**
- 12/24 steps-slots
Pipeline Parallel: Subminibatches

- **N workers, K subminibatches:**
 - 2(N + K - 1) steps for fwd/bwd
 - Total step-slots: 2N(N + K - 1)
 - Idle step-slots: 2N(N - 1)
 - Fraction of idle slots: (N - 1)/(N + K - 1)

- **As N grows:**
 - K = N → 50% idle slots
 - K = 4N → 20% idle slots
Pipeline Parallel: Interleaved Layers

- **Benefit:** increases the percentage of time each worker is busy
 - Worker 0 is busy for 4 out of 6 fwd pass steps (compared to 2/4 in the previous slide)
- **Downsides:**
 - Increases communication linearly (with the number of interleaved layers per worker)
 - Problematic if skip connections cross workers
Pipeline Parallel: Communication

- A worker communicates with its 2 neighbors
 - 1D mesh topology
 - 1D torus when interleaving layers
- Communication in each step of the fwd and bwd pass
 - Activations in fwd, activation gradients in bwd
- Communication very hard to overlap with computation
Pipeline Parallel: Challenges

• Lots of hard hard to hide communication
• Idle slots reduce scaling efficiency
 • Many subminibatches help with this, but run into the same problems as strong-scaling of data-parallel
• Load balancing workload across workers is difficult
 • Different layers of a network can take different amounts of time
 • Leads to even busy slots for other workers idling for portions of time
Model Parallel: Intra-Layer Parallel

- Partition a given layer’s weights among the workers
- Addresses some of the Pipeline Parallel challenges
 - Idle slots, load imbalance
- Two variants:
 - Row-wise partitioning
 - Column-wise partitioning
Row-wise Partitioning

Each worker:
- Has a portion of weight rows
- All of input activations
- Computes a portion of output activations

Fwd communication:
- Allgather: next layer needs all activations
Column-wise Partitioning

- Each worker:
 - Has a portion of weight columns
 - Has a portion of input activations
 - Computes partial activations

- Fwd communication:
 - Reduce_scatter: next layer needs full activations
Reducing Synchronization By Alternating Partitioning

- Note: no communication is needed
- Worker i produces output, which is its input for the next layer
Reducing Synchronization By Alternating Partitioning

Row-wise partitioning

Worker 0

Worker 1

Worker 2

Layer K fwd

Col partitioning

Layer $(K+1)$ fwd

Communication: Allreduce

Layer $(K+2)$ fwd
Intra-Layer Parallel: Communication

- Row-wise in fwd becomes Col-wise in bwd
- Col-wise in fwd becomes Row-wise in bwd
- **Row-wise:**
 - Fwd: allgather
 - Bwd: reduce_scatter
- **Col-wise:**
 - Fwd: reduce_scatter
 - Bwd: allgather
- **When row- and col- are alternated:**
 - Allreduce every two layers, in fwd and bwd
 - Halves the synchronizations compared to not alternating
Communication Pattern Summary

- **Data Parallel:**
 - `Allreduce` of weights
 - Can be overlapped with computation

- **Pipeline Parallel:**
 - `Point-wise` communication of activations and activation gradients
 - Hard to overlap with computation
 - Hard to load-balance

- **Intra-layer Parallel:**
 - `Allgather`, `Reduce_scatter` of activations and activation gradients
 - `Allreduce` if row-wise and col-wise partitioning is alternated
 - Hard to overlap with computation

- **Hybrid Parallel: some layers data parallel, some layer model-parallel**
 - Common for recommendation networks (model parallel embeddings, data-parallel MLP)
 - `Alltoall` of activations and activation gradients: each pair of workers exchange unique values
 - Most performant on switched or fully connected topologies
 - Hard to overlap with computation
Summary

- Networks and dataset are getting larger to set new state of art results
- Scale-out enables these networks to be trained
- Success requires many optimized components:
 - Hardware:
 - Fast accelerators for DL
 - High-bandwidth, low-latency interconnects
 - Topologies matter (must match communication patterns)
 - Network switches with math capabilities free up DL accelerators to do compute
 - Software:
 - Math libraries (CUDNN, CUBLAS, MKL, ...)
 - Collective communication libraries (NCCL, Horovod, ...)
 - Training frameworks (MxNet, PyTorch, TensoFlow, HugeCTR, ...)
 - Proper choice of parallelism (manual, MeshTensorFlow, Gshard, WSE)
Throughput Improvements, MLPerf v0.5 → v0.6
Largest Improvements were due to Scale-Out SW

Identical machines submitted to v0.5 and v0.6
- Same chips, chip count, interconnect
- Adjusted for epoch differences
 - Due to some rule and hyper-parameter changes

Patterned bars: multi-node
MLPerf Submission Scale in Chips
MLPerf Submission Scale in Chips, Log Scale