Tutorial: A New Era in Distributed Computing with Blockchains and Databases

C. Mohan

IBM Fellow
IBM Almaden Research Center, San Jose, USA

Distinguished Visiting Professor
Tsinghua University, Beijing, China

LinkedIn/Telegram/Twitter/WeChat: seemohan
Facebook: cmohan

Links to Videos, Slides, Bibliography & Twitter Handles @ http://bit.ly/CMbcDB
Goal: Introduce practically relevant private/permissioned blockchains (BCs) to non-techies AND techies; also, get into details of many private blockchain systems.

- Origin of Blockchains (BCs)
- Related Distributed Systems/Databases Topics
- Evolution: Smart Contracts, Private BCs, …
- Consortia Approach to Development of Systems
- Applications: Production, PoCs, …
- Market Scene
- Benchmarks
- Architectural Choices and Relationship to DB Replication
- Technical Details of Representative Systems: Enterprise Ethereum, Hyperledger Fabric & Composer, R3 Corda, Coco Framework, BigchainDB, Sawtooth, Ripple
- Futuristic Topics
Blockchain (BC)

• Origin in digital currencies (Bitcoin - Satoshi Nakamoto, 2008) – anonymity, open/public/permissionless environment – awful performance (7 TPS, 10 minutes response time) and widely-varying transaction fees

• Numerous organizations across the world working on various aspects of it: security, consensus, database, benchmarks, verification, …

• Banks, regulators, universities, startups, big tech companies, services companies, governments, … mostly as part of consortia

 • 2/2017: First production deployment of BC technology by IBM & Northern Trust in Guernsey for administration of private equity fund managed by Unigestion – Hyperledger Fabric 0.6

 • 4/2017: China’s Tencent announced TrustSQL

 • 7/2017: Hyperledger Fabric 1.0 Released

 • Hyperledger Fabric on IBM Cloud - IBM Blockchain Platform (formerly HSBN) on highly secure Linux on mainframes (System Z) with security hardware – announced August 2017 – available in Dallas, London, Frankfurt, Tokyo, Toronto, Washington DC, …

 • 10/2017: Oracle announced Blockchain Cloud Service (BCS) - Fabric 1.0 based

 • 10/2017: China’s Baidu joined Hyperledger as a Premium Member & 1/2018: Announces BaaS offering

 • 3/2018: Hyperledger Caliper Benchmarking Project initiated

 • 4/2018: Huawei announced Blockchain Cloud Service for China & AWS announced Blockchain Templates (Fabric/Ethereum)

 • 5/2018: Enterprise Ethereum Client Specification Released

 • 7/2018: IBM announces work on Stablecoin (pegged to US$) Stronghold USD

• Grand View Research: Global BC Tech Market $7.74B by 2024

• My focus: Private/Permissioned BC Systems!
Blockchain Jobs

BITCOIN

Cryptocurrencies and blockchain are becoming a hot trend in the job market

- On Thursday, CoinDesk, a leading source of cryptocurrency news and organizer of major industry conferences, launched an online "Career Center" with job listings.
- Listings of "blockchain" skills skyrocketed more than 6,000 percent in the first quarter from a year ago, online freelancing database Upwork said in a report Tuesday.
- However, there are many risks. Sometimes a start-up has a good idea, brings people to work on a prototype, but doesn't get funding, said David Gadd, a California-based recruiter focused on blockchain talent acquisition. So the company has to close down.

Evelyn Cheng | @chengevelyn
Published 11:45 AM ET Fri, 4 May 2018 | Updated 2:04 PM ET Fri, 4 May 2018

Blockchain jobs and salaries—2018 report

C. Mohan, Hot Chips, 2018-08-19
Blockchain Jobs in USA (Crypto Fund Research 4/2018)

Top US Cities for Blockchain Jobs

Cumulative Five-Factor Score (Max=100)

- Unemployment Rate
- # of Crypto Funds
- # of Blockchain Startups
- # of Top Blockchain Companies
- # of Blockchain Job Postings

Horizon 2020 Existing EU Projects on Blockchain

* D-CENT (social money for democratic societies)/EU-funding ended in May 2016- https://dcentproject.eu/
* DECODE (decentralised management architecture)- https://www.decodeproject.eu/
* SUnFISH- http://www.sunfishproject.eu
* Symbiote- https://www.symbiote-h2020.eu
Bitcoin Blockchain

Figure 1. How the Bitcoin blockchain works

Bob owes Alice money for lunch. He installs an app on his smartphone to create a new Bitcoin wallet. A wallet app is like a mobile banking app and a wallet is like a bank account.

To pay her, he needs two pieces of information: his private key and her public key.

Bob gets Alice's public key by scanning a QR code from her phone, or by having her email him the payment address, a string of seemingly random numbers and letters.*

The app alerts Bitcoin 'miners' around the world of the impending transaction. 'Miners' provide transaction verification services.

The miners verify that Bob has enough bitcoins to make the payment.

Many transactions occur in the network at any time. All the pending transactions in a given timeframe are grouped (in a block) for verification. Each block has a unique identifying number, creation time and reference to the previous block.

*Anyone who has a public key can send money to a Bitcoin address, but only a signature generated by the private key can release money from it.

Graphic: Deloitte University Press. Source: American Banker®
Bitcoin & Other Cryptocurrencies

UTXO Cryptocurrencies

- **Unspent Transaction Output (UTXO)**: Data model introduced by Bitcoin - also used by many other cryptocurrencies and distributed applications (DAApps)
- UTXO represents each step in the evolution of a data object as a separate atomic state on the ledger
- Such a state is created by a transaction and destroyed/consumed by another unique transaction occurring later
- Every given transaction destroys a number of input states and creates one or more output states
- A “coin” in Bitcoin is initially created by a coinbase transaction that rewards the “miner” of a block. This appears on the ledger as a coin state designating the miner as the owner.
- Any coin can be spent in the sense that the coin is assigned to a new owner by a transaction that atomically destroys the current coin state designating the previous owner and creates another coin state representing the new owner
- Value in the UTXO model is transferred through transactions that refer to several input states that all belong to the entity issuing the transaction
- An entity owns a state because the public key of the entity is contained in the state itself
- Every transaction creates one/more output states in the KVS representing the new owners, deletes the input states in the KVS, and ensures that the sum of the values in the input states equals the sum of the output states’ values
- There is also a policy determining how value is created (e.g., coinbase transactions in Bitcoin or specific mint operations in other systems) or destroyed
Bitcoin’s Academic Pedigree

Arvind Narayanan, Jeremy Clark
ACM Queue, August 2017
Cryptoassets & ICOs

- CFTC considers cryptoassets to be commodity
- FinCEN as money
- SEC as security (Bitcoin/Ether excepted)
Common Blockchain Myths (McKinsey, 6/2018)

Five common blockchain myths create misconceptions about the advantages and limitations of the technology.

<table>
<thead>
<tr>
<th>Myth</th>
<th>Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blockchain is Bitcoin</td>
<td>- Bitcoin is just one cryptocurrency application of blockchain, used and configured for many other applications.</td>
</tr>
<tr>
<td>2. Blockchain is better than traditional databases</td>
<td>- Blockchain’s advantages come with significant technical trade-offs that mean traditional databases often still perform better.</td>
</tr>
</tbody>
</table>
| **3. Blockchain is immutable or tamper-proof** | - Blockchain data structure is append only, so data can’t be removed.
- Blockchain could be tampered with if >50% of the network-computing power is controlled and all previous transactions are rewritten—which is largely impractical. |
| **4. Blockchain is 100% secure** | - Blockchain uses immutable data structures, such as protected cryptography.
- Overall blockchain system security depends on the adjacent applications—which have been attacked and breached. |
| **5. Blockchain is a “truth machine”** | - Blockchain can verify all transactions and data entirely contained on and native to blockchain (e.g., Bitcoin).
- Blockchain cannot assess whether an external input is accurate or “truthful”—this applies to all off-chain assets and data digitally represented on blockchain. |

McKinsey & Company
Distributed Systems

- Distributed operating systems
- Distributed virtual memory
- Message passing in distributed computations and distributed checkpoints
- Clock synchronization and event ordering (e.g., Lamport clocks)
- Byzantine agreement and distributed consensus
- Two phase commit optimizations (e.g., Presumed Abort)
- (Transactional) RPCs and distributed file/object systems
- Asynchronous computation via message queues and pub-sub
- Distributed event-based systems
- Client-server, mobile computing and caching, WWW
 - Workflow or business process management systems
- Service Oriented Architecture (SOA)
- Public cloud and hybrid cloud
- ...

C. Mohan, Hot Chips, 2018-08-19
Data Systems

- Relational DBMSs (e.g., System R) and SQL
- Data consistency, degrees of isolation and fault tolerance
- Distributed databases (e.g., R*) and distributed transactions/queries
- Synchronous and asynchronous replication with primary copy
- Update anywhere (multi-master) replication and eventual consistency
- Stored procedures, user-defined types/functions, data provenance, …
- Data warehousing and parallel DBMSs – OLTP vs OLAP
- Shared Nothing Vs Shared Disks
- Object-oriented databases, XML, schema chaos, data integration, …
- Web2.0-inspired NoSQL, sharding & massive scaling (e.g., Spanner), JSON, …
- Big Data: Map-Reduce, Hadoop, Spark, …
- Data privacy, multitenancy and trans-border data flow restrictions
- Multi data centers and disaster recovery
- …
Problem Being Solved (Export Import Scenario)

Recording of events is becoming much more complex...

... Inefficient, expensive, vulnerable, lack of transparency
Basic Change to Business Processes

Traditional Way

1. Party A’s records
2. Bank’s records
3. Clearing House
4. Party B’s records

→ All parties have same replica of the ledger

... Inefficient, expensive, vulnerable

Blockchain Way

1. Party A
2. Bank
3. Auditor

→ Digitally signed, encrypted transactions & ledger

... Consensus, provenance, immutability, finality

Basic Change to Business Processes
Which Use Case Needs Blockchain?

World Economic Forum 4/18

These 11 questions will help you make a quick initial assessment of whether blockchain is the right solution for the problem you’re facing.

Blockchain

Beyond the Hype

Notes: Incorrect Recommendation about use of blockchains for managing physical assets.
Smart Contracts

Everest Group

Smart contracts: realizing true benefits of blockchain

Blockchain is a cryptographic or encoded ledger (database) of transactions in the form of blocks arranged in a chain.

Smart contract, a complex set of software codes with components designed to automate execution and settlement, is the application layer that makes much of the benefits of blockchain technology a reality.
IBM has Long Provenance with Blockchain …

Aug 2015
IBM starts developing first prototype of blockchain technology (Open Blockchain); first client engagements

Feb 2016
IBM becomes a founding member of Linux Foundation Hyperledger; donates code and IP

Jun 2016
IBM opens first blockchain garages for clients; Hyperledger Fabric v0.6 released

Aug 2017
Number of IBM blockchain client engagements now totals over 400

Jun 2018
IBM Blockchain Platform updated to Fabric 1.1

Feb 2018
IBM Blockchain Platform Starter Plan announced @ THINK

Jul 2017
Fabric 1.0 released; IBM Blockchain Platform announced soon after

Dec 2016
IBM starts developing first prototype of blockchain technology (Open Blockchain); first client engagements

Feb 2016
IBM becomes a founding member of Linux Foundation Hyperledger; donates code and IP

Jun 2016
IBM opens first blockchain garages for clients; Hyperledger Fabric v0.6 released

Dec 2016
Number of IBM blockchain client engagements now totals over 400

Jun 2018
IBM Blockchain Platform updated to Fabric 1.1

Feb 2018
IBM Blockchain Platform Starter Plan announced @ THINK

Jul 2017
Fabric 1.0 released; IBM Blockchain Platform announced soon after

Aug 2015
IBM starts developing first prototype of blockchain technology (Open Blockchain); first client engagements
BaaS: IBM Blockchain Platform (IBP)

IBM Blockchain Platform is a fully integrated enterprise-ready blockchain platform designed to accelerate the development, governance, and operation of a multi-institution business network

- **Developer tools** that make use of Hyperledger Composer to quickly build your blockchain application
- Hyperledger Fabric provides the ledger; managed through a set of intuitive operational tools
- **Governance tools** for democratic management of the business network
- Flexible deployment options, including a highly secure and performant IBM Cloud environment

5/2018: IBM Introduces Crypto Anchor Verifier – special lens added to mobile phone camera

Microscopic details of an object’s surface are measured – e.g., optical characteristics such as shape, viscosity, saturation value, spectral values (AI + optical imaging)
Platform Value: Simplicity in the face of overwhelming complexity

<table>
<thead>
<tr>
<th></th>
<th>IBM Blockchain Platform</th>
<th>Community Code Deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inviting members</td>
<td>5 seconds</td>
<td>20 minutes per instance</td>
</tr>
<tr>
<td>Installing and instantiating smart contracts</td>
<td>Single click installation</td>
<td>10 minutes per smart contract per peer</td>
</tr>
<tr>
<td>Deployment</td>
<td>Specify network parameters and automatically launch ordering service</td>
<td>Not available</td>
</tr>
<tr>
<td>Network alterations and additions</td>
<td>Add new members, channels and smart contracts through single clicks, text box or drop down via the UI</td>
<td>CLI driven, and more advanced skills required</td>
</tr>
<tr>
<td>Support</td>
<td>Complete support from the HW stack through the blockchain code base included</td>
<td>IBM support options available</td>
</tr>
<tr>
<td>Security</td>
<td>Secure container and highest level of security provided</td>
<td>Custom</td>
</tr>
<tr>
<td>Migration</td>
<td>Rolling migration and 99.999% availability provided under the covers</td>
<td>Not available</td>
</tr>
</tbody>
</table>

“IBM provides us with the easiest way to develop prototype blockchain applications for our clients. Thank you!”
-- Global consulting firm

“IBM has enabled our team to develop our blockchain demo with minimal hassle and gives us a clear path to scale with the tools to manage it”
-- Series backed start-up
Starter Plan

- Get started with IBM Blockchain Platform with one-click setup and a fully functional network
 - Configured for two organizations with one peer each, sample applications and informational tutorials
 - Environment enables iterative development prior to production deployment
 - Same experience as Enterprise
 - Uses SOLO ordering for simplified configuration, development and testing

- Sign up for a **30 day free trial**
 - After that time, there is a monthly charge of $250 membership fee per month, plus $125 per peer
IBP: Security at Each Architecture Layer

- Secure Hardware
 - Hardware Security Module
 - Encrypted Storage
- Secure Services Containers
- Membership Services
- Secure Comms
- Consensus
 - Hyperledger Fabric
Blockchain Technical Concepts (Hyperledger Fabric)

Peers are the networked services that maintain ledger state and run smart contracts.

Channels are defined subsets of the peer network that share a single ledger.

Certificate authorities provide identity services to participants on the network.

Smart contracts constitute the transaction logic whose output determines changed asset states.

Consensus is the process by which agreement is obtained on the peer network.

The **Ordering Service** decides transaction sequence and distributes blocks to peers.
Actors in a Blockchain Solution
Composer: Workflow of Building a Model
Building Communities in Blockchain Networks

- **Consortium Based Network**: Founders are equal among other participants, may include a joint legal entity among the founders (e.g., JV).

Examples: JPX, we.trade, IBM Food Trust

- **Founder Directed Network**: Individual founder in a position to provide strong direction.

Examples: CLES, Fundamental to FX

- **Community Based Network**: Driven by industry standards bodies or existing non-blockchain network owners.

Examples: IBM Watson, SWIFT
Blockchain Applications

- Track provenance, ownership, relationships & lineage of assets
- Supply Chain – Food Safety (Walmart), Logistics (Maersk)
- Health Data Exchange (FDA)
- Know Your Customer
- Derivatives Processing
- Trade/Channel Finance (IGF)
- Trade Information Warehouse (DTCC)
- Post-Trade Reconciliation/Settlement
- Private Equity Fund Management (Unigestion)
- Syndicated Loans
- Diamond/Valuables Tracking and Protection – Provenance Management (Everledger)
- Cross-Border Payment, Payments for/by Unbanked Populations
- Low volume stock trading (JPX)

IBM Blockchain Engagements

Making blockchain real for business with more than 400 engagements and multiple active networks

<table>
<thead>
<tr>
<th>Trade Finance</th>
<th>Pre and Post Trade</th>
<th>Complex Risk Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Trade Chain</td>
<td>DTCC</td>
<td>AIG</td>
</tr>
<tr>
<td>MIZUHO</td>
<td>CLS</td>
<td>Standard Chartered</td>
</tr>
<tr>
<td>NATIXIS</td>
<td>Trafifgura</td>
<td></td>
</tr>
<tr>
<td>BRLS</td>
<td>JPX</td>
<td></td>
</tr>
<tr>
<td>SECURITY</td>
<td>UNION PAY</td>
<td></td>
</tr>
<tr>
<td>ARKEA</td>
<td>BOSRA ITALIANA</td>
<td></td>
</tr>
<tr>
<td>DIACC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECURED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crédit Mutuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORTHERN TRUST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBI 証券</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDA</td>
<td>SMART DUBAI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Chain</td>
<td>Food Safety</td>
<td>Provenance/ Traceability</td>
</tr>
<tr>
<td>MÆRSK</td>
<td>Walmart</td>
<td>everledger</td>
</tr>
<tr>
<td>PSA</td>
<td>Dole</td>
<td></td>
</tr>
<tr>
<td>Driscoll's</td>
<td>Nestlé</td>
<td></td>
</tr>
<tr>
<td>Tyson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McLane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Opportunities by Industrial Sector (McKinsey, 6/18)

Granular assessments at the use-case level are necessary to determine which blockchain opportunities to pursue.

Blockchain opportunities by industrial sector

Impact

High

Average by sector

Feasibility

Low

Overall average:
- Agriculture
- Arts and recreation
- Automotive
- Financial services
- Healthcare
- Insurance
- Manufacturing
- Mining
- Property
- Public sector
- Retail
- Technology, media, and telecom
- Transport and logistics
- Utilities

McKinsey & Company
Food Trust/Safety

What?
• Provide trusted source of information and traceability to improve transparency and efficiency across food network

How?
• Shared ledger for storing digital compliance documentation, test results and audit certificates network

Benefits
• Reduce impact of food recalls through instant access to end-to-end traceability data to verify history in food network & supply chain
• Help address 1 in 10 people sickened and 400K fatalities worldwide which occur every year from food-born illnesses
Global Trade Digitization (GTD)

What?

• An open, extensible platform for sharing shipping events, messages, and documents across all the actors and systems in the supply chain ecosystem.

How?

• Providing Shared Visibility and Shared State for Container Shipments

Benefits

• Increase speed and transparency for cross border transactions through real time access to container events.
• Reduced cost and increased efficiency through paperless trade
Dubai Blockchain Strategy

- Aims for Dubai to become the first blockchain-powered city by 2020
- For Dubai government to become paperless by shifting all transactions to Blockchain, and empower Dubai Smart city experience for all
- Based on Three pillars:
 - Government Efficiency: implementing blockchain technology in government services
 - Industry Creation: supporting the creation of a blockchain industry through empowering start ups and businesses
 - International Leadership: leading global thinking on blockchain technology
- the Smart Dubai Office SDO launched Blockchain Challenge in partnership with global accelerator 1776
 - aims to identify the most innovative blockchain ideas from startups around the world and bring them to Dubai
- SDO launched a city-wide effort to implement blockchain in city services
- Partnerships with IBM as a Blockchain Lead Strategic Partner, and Consensys as Blockchain City Advisor.

Source: Saeed Al Dhaheri, Etisalat Academy 3/2017
IBM-FDA Partnership

What?

- Create and promote secure, efficient and scalable exchange of health data using blockchains

How?

- Create an electronic ledger of where and how data is transferred and exchanged
- Initial trial focus on oncology data

Benefits

- Creating an audit trail through the ledger, healthcare professionals will be able to:
 - hold information leakers accountable
 - maintain transparency in what data is going where
 - secure weak spots in sharing process
Blockchain Companies/Consortia & Banks

New kid on the block

Enterprise Ethereum Alliance is the latest addition to a list of companies and consortiums focused on blockchain where banks serve as investors or partners.

<table>
<thead>
<tr>
<th>Company</th>
<th>No. of partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Settlement Coin</td>
<td>5</td>
</tr>
<tr>
<td>Global Payments Steering Group</td>
<td>6</td>
</tr>
<tr>
<td>Chain</td>
<td>9</td>
</tr>
<tr>
<td>Digital Asset Holdings</td>
<td>15</td>
</tr>
<tr>
<td>Enterprise Ethereum Alliance</td>
<td>30</td>
</tr>
<tr>
<td>R3</td>
<td>81</td>
</tr>
<tr>
<td>Ripple</td>
<td>90+</td>
</tr>
<tr>
<td>Hyperledger</td>
<td>122</td>
</tr>
</tbody>
</table>

Source: Staff research

Source: American Banker 2-2017
BC Software Stack

Consensus Layer (PBFT, PoW, PoS, POA, etc.)

Smart Contract Execution Engine (Virtual Machine, Docker, etc.)

Data Model Layer (LevelDB, RocksDB, etc.)

Source: Anh Dinh, et al., SIGMOD 2017
Blockchain Architecture/Feature Choices

• Cryptocurrencies Vs Generalized Assets
• Permissionless/Public Vs Permissioned/Private
• Byzantine Vs Non-Byzantine fault model
• Consensus approach: PoW, PoA, PoET, PBFT, …
• SQL Vs NoSQL data stores
• Transactional stores Vs Non-transactional stores
• Versioned/Unversioned state database
• On-Chain Vs Off-Chain data
• Parallelism exploitation during different phases of transaction execution
• Pluggable features: consensus protocol, state DB, smart contract language, …

Database Replication

- **Primary log replay** at replica – homogeneous systems with full DB replicas, typically done for disaster recovery (DR) backup

- Log **capture generates DML statements from what is logged** and **apply** executes those statements (e.g., IBM Q Replication)
 - Can handle non-determinism and partial replicas
 - Requires dependency analysis to leverage parallelism at apply time

- Capture DML statements **as issued by application** and re-execute them at replica (e.g., H-Store/VoltDB)
 - Cannot handle non-determinism
 - Typically, serial execution of transactions

Upfront (fairly random, unoptimized) ordering of transactions in blockchain systems – leads to all sorts of issues!
Benchmark Framework: BLOCKBENCH (NUS)

- OLTP & OLAP load measured
- Metrics: throughput, latency, scalability, fault tolerance, security
- Consensus methods: Ethereum (PoW), Fabric (PBFT), Parity (PoA)
- Old version of Fabric (pre-V1)
- Fabric performs better
- Fabric scales well up to 16 nodes

Source: Anh Dinh, et al., SIGMOD 2017
Hyperledger Caliper

- Allows users to measure performance of a specific blockchain implementation with a set of predefined use cases
- Will produce reports containing a number of performance indicators, such as TPS (Transactions Per Second), transaction latency, resource utilization, …
- Intent is for Caliper results to be used by other Hyperledger projects as they build out their frameworks, and as a reference in supporting the choice of a blockchain implementation suitable for a user’s specific needs
- Initial contributors: Developers from Huawei, Hyperchain, Oracle, Bitwise, Soramitsu, IBM and Budapest University of Technology and Economics
- https://www.hyperledger.org/projects/caliper
Ethereum, Fabric, Corda Comparison

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Ethereum</th>
<th>Hyperledger Fabric</th>
<th>R3 Corda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of platform</td>
<td>Generic blockchain platform</td>
<td>Modular blockchain platform</td>
<td>Specialized distributed ledger platform for financial industry</td>
</tr>
<tr>
<td>Governance</td>
<td>Permissionless, public or private</td>
<td>Linux Foundation</td>
<td>R3</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Permissioned, private</td>
<td>Permissioned, private</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>Mining based on proof-of-work (PoW)</td>
<td>Broad understanding of consensus that allows multiple approaches Transaction level</td>
<td>Specific understanding of consensus (i.e., notary nodes) Transaction level</td>
</tr>
<tr>
<td>Smart contracts</td>
<td>Smart contract code (e.g., Solidity)</td>
<td>Smart contract code (e.g., Go, Java)</td>
<td>Smart contract code (e.g., Kotlin, Java) Smart legal contract (legal prose)</td>
</tr>
<tr>
<td>Currency</td>
<td>Ether</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tokens via smart contract</th>
<th>Currency and tokens via chaincode</th>
</tr>
</thead>
</table>

Table 1: Comparison of Ethereum, Hyperledger Fabric and Corda

FSBC Working Paper, 6/2017
Ethereum

- Public blockchain system like Bitcoin
 - Extends it with Smart Contracts
 - Uses PoW for consensus
 - Own machine lang & VM
 - gas charging!

- Most apps relate to its currency Ether

- **Enterprise Ethereum Alliance (EEA)**: JPMorgan Chase, Microsoft, Intel, Accenture, Banco Santander, BNY Mellon, ConsenSys, Credit Suisse, ING, Thomson Reuters, UBS, Wipro
 - EEA will add confidentiality (Quorum), scalability (pluggable consensus) and permissioning to Ethereum
 - Focus on specification, **EntEth** 1.0 with Python reference client, benchmarking, compliance testing and tools
 - Develop standards for Ethereum: best practices, security, privacy, scalability, interoperability

- **Quorum** from JPMorgan; Support for PBFT added in 7/2017 by AMIS
Quorum Overview

J.P. Morgan

Highlights

- **Built on Ethereum**
 - 50,000+ unit tests, Security Audits, Bounty Program
 - Largest Ecosystem of Developers, Tools, DApps
 - Public Ethereum blockchain protects over $1B+ Ether

- **Simple Privacy Design**
 - Supports both private and public transactions and smart contracts

- **Single Blockchain Architecture**
 - All public and private smart contracts and state derived from a single, common, complete blockchain of transactions validated by every node in the network
 - Private smart contract state validated by parties to contract only
 - Best of both worlds... every node validating the list of transactions while only exposing details of private transactions and contracts to relevant parties

- **High Performance**
 - Able to process dozens to hundreds of transactions per second, depending on system configuration; enough to support institutional volumes

Architecture

- Distributed App
- Distributed App
- Distributed App
- Distributed App

Quorum (go-Ethereum Fork)

Transaction Manager
Crypto Enclave
QuorumChain
Network Manager

Components

- **Transaction Manager** – allows access to encrypted transaction data for private transactions, manages local data store and communication with other Transaction Managers
- **Crypto Enclave** – responsible for private key management and encryption and decryption of private transaction data
- **QuorumChain** – voting-based, BFT-hardened consensus mechanism that utilizes core Ethereum features to verify and propagate votes through the network
- **Network Manager** – controls access to the network, enabling a permissioned network to be created

As of 22-Sep-2016
Quorum Network J.P. Morgan
Hyperledger: A Linux Foundation project

- A collaborative effort created to advance cross-industry blockchain technologies for business
- Founded February 2016; now more than 230 member organizations
- Open source, open standards, open governance
- Five frameworks and five tools projects
- IBM is a premier member of Hyperledger

Hyperledger Momentum

- 47k+ Commits
- 12 Active Community Working Groups
- 230+ Members (30+ in China)
- 5 Tools
- 110+ Meetups Worldwide
- 5 Frameworks
- 30k+ Meetup Participants
- 2 Production Releases
 - Hyperledger Fabric v1.1
 - Sawtooth v1.0
- 500+ Developers

www.hyperledger.org
Hyperledger Fabric Roadmap

V1 Alpha
- Docker images
- Tooling to bootstrap network
- Fabric CA or bring your own
- Java and Node.js SDKs
- Ordering Services - Solo and Kafka
- Endorsement policy
- Level DB and Couch DB
- Block dissemination across peers via Gossip

V1 GA
- Hardening, usability, serviceability, load, operability and stress test
- Chaincode ACL
- Chaincode packaging & LCI
- Pluggable crypto
- HSM support
- Consumability of configuration
- Next gen bootstrap tool (config update)
- Config transaction lifecycle
- Eventing security
- Cross Channel Query
- Peer management APIs
- Documentation

V1.1
- Node.js smart contracts
- Node.js connection profile
- Smart Contract APIs:
 - Encryption library
 - Txn submitter identity
 - Access control (using above)
- Performance & Scale
 - More orderers at scale
 - Parallel txn validation
 - CouchDB indexes
- Events
 - Per channel vs global
 - Block info minimal events
- CSR for more secure certs
- Serviceability
 - Upgrade from 1.0
 - **Technical Preview features**
 - Private channel data
 - Finer grained access control on channels (beyond orgs)
 - ZKP features (ID Mixer)
 - Java for Smart contracts

V1.2
- V1.1 Technical Preview features
 - Finalize Side DB - Private Data
 - Finalize Java chaincode
 - Finalize Fabric ACL mechanism
- Usability Features
 - e.g. Service discovery
- Technical Debt/Hygiene
 - e.g. testing frameworks
 - Parallel testing
 - More modular code
- Pluggable endorsement and validation
- State-based Endorsement
- Privacy-preserving state-based endorsement

Dates determined by the Hyperledger community, subject to change
Hyperledger Fabric Project

- Initiated by IBM with IBM open source ledger contribution (Feb 2016)
- Significant change in architecture from V0.6 to V1
 - Chaincode trust flexibility
 - Channel concept for Scalability & Confidentiality enhancement
 - Consensus modularity
 - Pluggable State DB APIs
 - 2 types of peer nodes: Endorsing, non-endorsing/committing
- Used PBFT for consensus before V1
- Other Hyperledger Projects: Iroha, Sawtooth, Composer, Quilt, …

Hyperledger Premier members include: Accenture, Airbus, American Express, Baidu, Change Healthcare, Cisco, CME Group, Deutsche Bank, Deutsche Borse Group, Daimler, Digital Asset, DTCC, Fujitsu, Hitachi, IBM, Intel, J.P. Morgan, NEC, R3, SAP, Tradeshift and Wanda FFan Technology

Hyperledger Fabric V1 Contributors - Engineers from: Arxan, Cloudsoft, CLS, d20 Technical Services, Depository Trust & Clearing Corporation (DTCC), Digital Asset, Fujitsu, GE, Gemalto, HACERA, Hitachi, Huawei Technologies, Hyperchain, ImpactChoice, IT People, Knoldus, Linux Foundation, Netease, Passkit, State Street Bank, SecureKey, IBM, SAP, Thoughtworks and Wanda Group. There were also contributions from 35 unaffiliated individuals. In total, 159 developers have contributed.
Overview of Application Flow

- Developers create **application** and smart contracts (**chaincodes**)
 - Chaincodes are deployed on the network and control the state of the **ledger**
 - Application handles user interface and submits **transactions** to the network which call chaincodes
- Network emits **events** on block of transactions allowing applications to integrate with other systems
Fabric V1 Architecture

• Elements of the Architecture
 • Smart Contract (*Chaincode* in *Go*): System and regular ones. Deploy/Invoke latter.
 • Assets represented as Key-value pairs in binary and/or JSON form
 • State: Versioned KV model - stored in Level DB or CouchDB
 • Ledger data: Blockchain has full state, including history
 • Transactions

• Kafka for Ordering:
 • No Byzantine fault handling
 • Done to improve performance
 • Pluggable consensus permits other methods

IBM Blockchain Platform and Oracle Blockchain Cloud Service based on it
Fabric V1 Ledger

Transaction Log
- tx array
- block
 - TX Reads[]
 - TX Writes[]
 - Last written key/value

State Database
- Latest written key/values for use in transaction simulation
- Supports keyed queries, composite key queries, key range queries

CouchDB (external option)
- Supports keyed queries, composite key queries, key range queries, plus full data rich queries (beta in 1.0)

Key History index
- tracking history of a key

Block index
- blockHash -> SegNo + offset
- blockNum -> SegNo + offset
- txId -> SegNo + offset

Replaceable

File System Level DB

Replaceable

Fabric V1 Ledger
Transaction Execution Overview Fabric V1

Endorsement, Ordering, Validation/Commit

- Transaction is sent to the counter-parties represented by Endorsing Peers on their Channel
- Each Peer simulates transaction execution by calling specified Chaincode function(s) and signs result (Read-Write Sets)
- Each Peer may participate in multiple channels allowing concurrent execution
- Ordering Service accepts endorsed transactions and orders them according to the plug-in consensus algorithm then delivers them on the channel
- All (Committing) peers on channel receive transactions: on successful validation, commit to ledger. No chaincode execution.

Channel.SendTransactionProposal (Step 1) and channel.SendTransaction (Step 2)
Architectural Differences

Figure 1: Order-execute architecture in replicated services.

Figure 2: Execute-order-validate architecture of Fabric (rw-set means a readset and writeset as explained in Sec. 3.2).
Endorsement Policies

An endorsement policy describes the conditions by which a transaction can be endorsed. A transaction can only be considered valid if it has been endorsed according to its policy.

- Each chaincode is deployed with an Endorsement Policy
- **ESCC** (Endorsement System ChainCode) signs the proposal response on the endorsing peer
- **VSCC** (Validation System ChainCode) validates the endorsements
DBMS Implications

• Simulation concept requires layer between chaincode and State DB having to take on analysis of DBMS calls
 • Update statements split into two: read part and write part
 • Read alone sent to DBMS with modifications to retrieve version #s for items read
 • Writes not sent to DBMS but processed and cached locally – doesn’t allow for read your own write by chaincode transaction
• During Commit phase, read sets validated by retrieving each item’s version # individually and then, if validation succeeds, writes also done one at a time
• Dealing with phantoms requires reexecution of query during commit phase to be sure simulation read set same as read set at Commit time
• Chaincode portability across different State DBMSs hard to do
• Lots of open questions and research issues in this area
R3 Alliance & Corda

- Barclays, BBVA, Commonwealth Bank of Australia (CBA), Credit Suisse, J.P. Morgan, State Street, Royal Bank of Scotland, UBS

- Special features for JVM to guarantee deterministic behavior

- Nodes backed by RDBMS, ledger data SQL queryable and joinable with private tables

- Corda written in Kotlin (simpler Scala with much better Java interoperability) from JetBrains – contracts in Kotlin/Java

- Contract execution is deterministic and its acceptance of a transaction is based on the transaction’s contents alone. A transaction is only valid if the contract of every input state and every output state considers it to be valid
R3 Corda Vault
Corda Vault and State

Each node on the network maintains a *vault* - a DB where it tracks all the current and historic states that it is aware of, and which it considers to be relevant to itself.
A transaction is only valid if it is digitally signed by all required signers. However, even if a transaction gathers all the required signatures, it is only valid if it is also **contractually valid**.
Corda Transactions

Transaction Chain

Notary and Regular Transactions

Every state has an appointed notary, and a notary will only notarize a transaction if it is the appointed notary of all the transaction’s input states.
Sawtooth (Intel)

- Project of Hyperledger; 1.0 release announced in 1/2018
- Proof of Elapsed Time (PoET) – Consensus Protocol
 - Every validator requests a wait time from a trusted function
 - Validator with shortest wait time for a particular transaction block is elected leader
 - Guaranteed wait time
 - Randomness in leader election (~ to lottery algorithm)
- Intended to run in a Trusted Execution Environment (TEE), e.g., Intel’s Software Guard Extensions (SGX)
- Concept of Transaction Family and Transaction Dependencies
- Transaction Scheduling: Serial or Parallel
- Same block can contain multiple transactions which modify same value!
- https://sawtooth.hyperledger.org/docs/core/releases/latest/contents.html
Microsoft Coco Framework/System

Designed to be open and compatible with any blockchain protocol
Blockchain Architecture/Feature Choices

- Cryptocurrencies Vs Generalized Assets
- Permissionless/Public Vs Permissioned/Private
- Byzantine Vs Non-Byzantine fault model
- Consensus approach: PoW, PoA, PoET, PBFT, …
- SQL Vs NoSQL data stores
- Transactional stores Vs Non-transactional stores
- Versioned/Unversioned state database
- On-Chain Vs Off-Chain data
- Parallelism exploitation during different phases of transaction execution
Application Flow with RDBMS (In Progress)

- Developers create application and smart contracts (chaincodes)
 - Chaincodes are deployed on the network and control the state of the ledger
 - Application handles user interface and submits transactions to the network which call chaincodes
- Network emits events on block of transactions allowing applications to integrate with other systems
Futuristic Topics

- Smart Contract portability & power of data APIs
- DBMS enhancements to add BC features
- Standards across BC systems
- Cross channel transactions
- Non-deterministic actions
- Analytics on chaincode data
- Many app design issues
- Design tools for endorsement decisions
- NL contracts -> formal contracts -> executable contracts

Numerous research possibilities for database and distributed systems people in this new era of distributed computing!
More Information

Links to Videos, Slides, Bibliography, Twitter Handles

Follow me on

Telegram, Twitter, WeChat, Instagram: @seemohan

Facebook: http://www.facebook.com/cmohan

LinkedIn: http://www.linkedin.com/in/seemohan/